

SCHALLTECHNISCHER BERICHT

NE-B-130027

Schalltechnischer Bericht für den Windpark "WP Temming" mit insgesamt zwei Windenergieanlagen am Standort 48727 Billerbeck.

Datum:

11. Dezember 2023

Auftraggeber:

Bearbeiter:

André Raming (M.Eng.)

noxt! engineering GmbH

Malberger Straße 13 · 49082 Osnabrück · Germany

Tel.: +49 (0) 160-40 24 579

engineering.noxt.de · engineering@noxt.de HRB-Nr.: 216557 · Amtsgericht Osnabrück

Geschäftsführer: Dipl.-Ing. (FH) Timm Schaer, M.Sc. & Dr. Phil Patock

ng GmbH

Ehrenwörtliche Erklärung

Der nachfolgende Bericht wurde nach bestem Wissen und Gewissen mit größter Sorgfalt erstellt und beinhaltet den anerkannten Stand der Technik. Die Ergebnisse basieren auf Daten, welche die noxt! engineering GmbH von Dritten zur Verfügung gestellt bekommen hat. Dieses sind u.a. Hersteller von Windenergieanlagen, Landesvermessungsämter und Immissionsschutzbehörden. Die Richtigkeit, Vollständigkeit und Aktualität dieser Daten kann durch die noxt! engineering GmbH nicht geprüft werden. Eine Haftung für diese Daten kann die noxt! engineering GmbH dementsprechend nicht übernehmen. Wir weisen den Auftraggeber darauf hin und er erkennt an, dass alle seine Entscheidungen, sei es kommerziell, technisch, steuerlich oder rechtlich, auf dem dieses Dokument basiert, in seiner alleinigen Verantwortung liegen. Die noxt! engineering GmbH ist von jeglicher Haftung ausgenommen, die auf den Daten Dritter basiert. Der Auftraggeber wird noxt! engineering GmbH insoweit von jeder Haftung freistellen. Der Bericht enthält insgesamt 87 Seiten. Die Weitergabe von Daten oder Informationen ist dem Auftraggeber gestattet. Die hier aufgeführten Bedingungen gelten auch für die im Gutachten verlinkten Anhänge. Authentisch ist dieses Dokument nur mit Originalunterschriften. Bezüglich der Urheberrechte verweisen wir auf die jeweils gültigen noxt! engineering GmbH Beraterbedingungen. Diese finden Sie unter engineering.noxt.de/agb.

Osnabrück, 11. Dezember 2023 noxt! engineering GmbH

Firmenstempel

Bearbeiter (André Raming (M.Eng.)) Geschäftsführer (Dipl.-Ing. (FH) Timm Schaer, M.Sc.)

1 Zusammenfassung

Am Standort 48727 Billerbeck plant die Firma

zwei Windenergieanlagen vom Typ N149 5.X (Nordex SE) und N149 5.X (Nordex SE). Die untersuchten Windenergieanlagen werden als Zusatzbelastung bezeichnet und die technischen Kenndaten in Tabelle 1.1 aufgelistet.

Tabelle 1.1: Technische Kenndaten der untersuchten Windenergieanlagen der Zusatzbelastung

ID	Anlagentyp	Nabenhöhe [m]	Nennleistung [kW]	
WEA T1	N149 5.X (Nordex SE)	164,0	5.700	
WEA T2	N149 5.X (Nordex SE)	164,0	5.700	

Am Standort 48727 Billerbeck befinden sich insgesamt 28 Windenergieanlagen, die als Geräuschvorbelastung zu berücksichtigen sind. Gemäß TA Lärm ist eine gewerbliche Geräuschvorbelastung am Standort 48727 Billerbeck zu berücksichtigen. Details hierzu befinden sich in Kapitel 4.1.

In der Umgebung des Windparks befinden sich 16 Gehöfte und Wohnhäuser die als Immissionsorte untersucht werden. Die exakte Lage ist dem Lageplan in der Anlage A zu entnehmen.

Die Berechnungen nach dem Interimsverfahren [Int] haben ergeben, dass es unter den in der Tabelle 1.2 dargestellten Betriebsbedingungen im Tages- und Nachtzeitraum zu keinen unzulässigen Überschreitungen der Immissionsrichtwerte der TA Lärm [TAL] kommt.

Tabelle 1.2: Auflistung der Betriebsmodi der Zusatzbelastung am Standort 48727 Billerbeck

ID	Betriebsmodus tags	Betriebsmodus nachts
WEA T1	Mode 0	Mode 14
WEA T2	Mode 0	Mode 9

Kapiteln näher beschrieben.

Für die Windenergieanlagen wurden die aktuell geltenden Regelungen für die Prognoseunsicherheit gemäß den Hinweisen der Bund/Länder-Arbeitsgemeinschaft Immissionsschutz (LAI) [LAI] sowie das Interimsverfahren [Int] angewandt. Zudem wurden die Länderregelungen (hier die des Bundeslandes Nordrhein-Westfalen [WEA]) umgesetzt. Lediglich für die gewerbliche Vorbelastung sind die Vorgaben des alternativen Verfahrens der DIN ISO 9613-2 [DINd] angewandt worden. Die Betrachtungen bilden das Worst-Case Szenario ab und entsprechen einer Maximalbetrachtung. Alle weiteren für die Berechnungen angesetzen Grundlagen werden in den folgenden

Inhaltsverzeichnis

1	Zus	ammenfassung	2
2	Auf	gabenstellung	9
3	Plar	nungsrechtliche Grundlagen	10
4	Ber	echnungsgrundlagen	12
	4.1	Vorbelastung durch Gewerbe- und Industrieanlagen	13
	4.2	Vorbelastung durch vorhandene Windenergieanlagen	15
	4.3	Windenergieanlagen der Zusatzbelastung	18
	4.4	Abstände zwischen den Immissionsorten und den Windenergieanlagen	18
5	Ber	echnungsergebnisse	20
	5.1	Berechnungsergebnisse für den Tageszeitraum	20
	5.2	Berechnungsergebnisse für den Nachtzeitraum	21
	5.3	Abschirmung und Reflexion	23
6	Beu	rteilung	25
	6.1	Beurteilung des Tageszeitraums	25
	6.2	Beurteilung des Nachtzeitraums	26
	6.3	Beurteilung Gesamtbetrachtung	30
	6.4	Spitzenpegel	30
	6.5	Abschätzung der Genauigkeit der Prognose	30
7	Infr	raschall	32
8	Inte	eraktive Karte	35
9		stermin	37
	9.1	Besichtigungsbilder IO-01	37
	9.2	Besichtigungsbilder IO-02	38
	9.3	Besichtigungsbilder IO-03	38
	9.4	Besichtigungsbilder IO-04	39
	9.5	Besichtigungsbilder IO-05	
	9.6	Besichtigungsbilder IO-06	40
	9.7	Besichtigungsbilder IO-07	40
	9.8	Besichtigungsbilder IO-08	41

Inhaltsverzeichnis

	9.9 Besichtigungsbilder IO-09	41
	9.10 Besichtigungsbilder IO-10	42
	9.11 Besichtigungsbilder IO-11	42
	9.12 Besichtigungsbilder IO-12	43
	9.13 Besichtigungsbilder IO-13	43
	9.14 Besichtigungsbilder IO-14	44
	9.15 Besichtigungsbilder IO-15	44
	9.16 Besichtigungsbilder IO-16	45
Lit	eraturverzeichnis	46
A	Lageplan	50
В	Detaillierte Berechnungsergebnisse	52
С	Immissionsorte	53
D	Schallquellen	72
E	Oktavbandspektren	81
F	Datenblätter	86
G	Pevisionsiihersicht	87

Abbildungsverzeichnis

9.1	Nordansicht IO-01 (Westenfeld 14; 48341 Altenberge)	37
9.2	Westansicht IO-02 (Westenfeld 12; 48341 Altenberge)	38
9.3	Süd-Ostansicht IO-03 (Kümper 204; 48341 Altenberge)	38
9.4	Ostansicht IO-04 (Kümper 203; 48341 Altenberge)	39
9.5	Westansicht IO-05 (Kümper 203b; 48341 Altenberge)	39
9.6	Süd-Ostansicht IO-06 (Kümper 203a; 48341 Altenberge)	40
9.7	Südansicht IO-07 (Kümper 155; 48341 Altenberge)	40
9.8	Ostansicht IO-08 (Kümper 155 (Neubau); 48341 Altenberge)	41
9.9	Nord-Westansicht IO-09 (Temming 80; 48727 Billerbeck)	41
9.10	Süd-Westansicht IO-10 (Temming 86; 48727 Billerbeck)	42
9.11	Nord-Ostansicht IO-11 (Temming 49; 48727 Billerbeck)	42
9.12	Nord-Ostansicht IO-12 (Temming 50; 48727 Billerbeck)	43
9.13	Nord-Ostansicht IO-13 (Temming 51; 48727 Billerbeck)	43
9.14	Südansicht IO-14 (Temming 52; 48727 Billerbeck)	44
9.15	Nord-Ostansicht IO-15 (Temming 56; 48727 Billerbeck)	44
9.16	Westansicht IO-16 (Temming 58; 48727 Billerbeck)	45
A.1	Lageplan	51

Tabellenverzeichnis

1.1	belastung	2
1.2	Auflistung der Betriebsmodi der Zusatzbelastung am Standort 48727 Billerbeck	2
3.1	Liste der untersuchten Immissionsorte mit der jeweiligen Gebietseinstufung	10
4.1	Luftdämpfungskoeffizienten α für die Oktavbänder gemäß DIN ISO 9613-2 [DINd]	12
4.2	Beschreibung der relevanten gewerblichen Schallquellen am Standort 48727 Billerbeck	14
4.3 4.4	Betriebsweisen der Vorbelastung im Nachtzeitraum	
	Windenergieanlagen	18
5.1	Berechnungsergebnisse im Tageszeitraum der Vor-, Zusatz- und Gesamt- belastung für die Fassadenseite (F) und das Geschoss (G). Der Schalldruck- pegel (W) und die mögliche Überschreitung (Ü) des Immissionsrichtwer-	
5.2	tes (IRW) sind in der Tabelle angegeben	20
	pegel (W) und die mögliche Überschreitung (Ü) des Immissionsrichtwer-	
5.3	tes (IRW) sind in der Tabelle angegeben	22
	zeitraum	23
6.1	Beurteilungspegel im Tageszeitraum der Vor-, Zusatz- und Gesamtbelastung für die Fassadenseite (F) und das Geschoss (G). Der Beurteilungspegel (B) und die Überschreitung (Ü) des Immissionsrichtwertes (IRW) sind in der Tabelle angegeben. Negative Überschreitungswerte signalisieren eine Unterschreitung des IRW	25
	eine Unterschreitung des IRW	20

6.2	Beurteilungspegel im Nachtzeitraum der Vor-, Zusatz- und Gesamtbelas-	
	tung für die Fassadenseite (F) und das Geschoss (G). Der Beurteilungspe-	
	gel (B) und die Überschreitung (Ü) des Immissionsrichtwertes (IRW) sind	
	in der Tabelle angegeben. Negative Überschreitungswerte signalisieren	
	eine Unterschreitung des IRW	27
6.3	Beurteilung der relevanten Immissionsorte gemäß TA Lärm [TAL] für die	
	Fassade (F) und das Geschoss (G).	28
6.4	Auflistung der Betriebsmodi für die Zusatzbelastung	30
C.1	Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Im-	
	missionsorten	54
D.1	Windenergieanlagen der Vorbelastung im Nachtzeitraum	73
D.2	Gewerbliche Punktschallquellen der Vorbelastung im Tages- und Nacht-	
	zeitraum	77
D.3	Gewerbliche Flächenschallquellen der Vorbelastung im Tages- und Nacht-	
	zeitraum	78
D.4	Windenergieanlagen der Zusatzbelastung im Tageszeitraum	79
D.5	Windenergieanlagen der Zusatzbelastung im Nachtzeitraum	80
E.1	Oktavbandspektren der angesetzten Betriebsmodi der Zusatzbelastung	82
E.2	Oktavbandspektren der angesetzten Betriebsmodi der Vorbelastung	83
G 1	Pavisionsiiharsicht	07

2 Situation und Aufgabenstellung

Die Firma plant am Standort 48727

Billerbeck in Nordrhein-Westfalen zwei Windenergieanlagen die in diesem Gutachten als Zusatzbelastung bezeichnet werden. Zum Erlangen der Genehmigung der geplanten Windenergieanlagen ist dem Kreis Kreis Steinfurt ein schalltechnischer Bericht vorzulegen, welcher die schalltechnische Gesamtgeräuschsituation mit Einhaltung der Immissionsrichtwerte nach TA Lärm [TAL] nachweist.

Im Sinne der TA Lärm [TAL] wird die Zusatzbelastung durch die zwei untersuchten Windenergieanlagen und die Vorbelastung durch die 28 bestehenden Windenergieanlagen und die gewerblichen Anlagen berücksichtigt. Für die Gesamtbelastung werden die berechneten Pegel der Vor- und Zusatzbelastung energetisch addiert.

Die Ergebnisse dieser Untersuchung erfolgen in Form eines schalltechnischen Berichts.

3 Planungsrechtliche Grundlagen

In der Umgebung des Windparks befinden sich 16 Gehöfte bzw. Wohnhäuser die als Immissionsorte untersucht werden.

Die geografische Lage ist dem Lageplan aus Anlage A zu entnehmen. Detaillierte Angaben zu den Koordinaten im System ETRS89/UTM Zone 32N und zu den Höhen sind in der Anlage C dargestellt.

Die nachfolgende Tabelle listet die betrachteten Immissionsorte mit der jeweiligen Gebietseinstufung auf. Die Gebietseinstufungen wurden den rechtskräftigen Bebauungsplänen entnommen bzw. mit der zuständigen Immissionsschutzbehörde abgestimmt.

Tabelle 3.1: Liste der untersuchten Immissionsorte mit der jeweiligen Gebietseinstufung

				IR	W
ID	Straße	Ort	Gebiet	tags	nachts
				[dB(A)]	[dB(A)]
IO-01	Westenfeld 14	48341 Altenberge	MI	60	45
IO-02	Westenfeld 12	48341 Altenberge	MI	60	45
10-03	Kümper 204	48341 Altenberge	MI	60	45
IO-04	Kümper 203	48341 Altenberge	MI	60	45
IO-05	Kümper 203b	48341 Altenberge	MI	60	45
IO-06	Kümper 203a	48341 Altenberge	MI	60	45
IO-07	Kümper 155	48341 Altenberge	MI	60	45
IO-08	Kümper 155 (Neubau)	48341 Altenberge	MI	60	45
IO-09	Temming 80	48727 Billerbeck	MI	60	45
IO-10	Temming 86	48727 Billerbeck	MI	60	45
IO-11	Temming 49	48727 Billerbeck	MI	60	45
IO-12	Temming 50	48727 Billerbeck	MI	60	45
IO-13	Temming 51	48727 Billerbeck	MI	60	45
IO-14	Temming 52	48727 Billerbeck	MI	60	45
IO-15	Temming 56	48727 Billerbeck	MI	60	45
IO-16	Temming 58	48727 Billerbeck	MI	60	45

Die genannten Immissionsorte wurden bei einer Ortsbesichtigung am 13.11.2023 durch André Raming (M.Eng.) fotodokumentiert. Die relevanten Fassadenseiten und Stockwerke wurden daraufhin bestimmt.

Für die Immissionsrichtwerte gelten nach TA Lärm [TAL] die folgenden Beurteilungszeiten für den Tages- und Nachtzeitraum:

tags 06:00 bis 22:00 Uhr nachts 22:00 bis 06:00 Uhr

Einzelne kurzzeitige Geräuschspitzen dürfen die Immissionsrichtwerte am Tage um nicht mehr als 30 dB(A) und in der Nacht um nicht mehr als 20 dB(A) überschreiten.

Die TA Lärm wurde im Zuge der Einführung des urbanen Gebietes (MU) durch § 6a der BauNVO in Abschnitt 6.1 geändert. Die Nummerierung bei der Vergabe der Zuschläge für die Tageszeiten mit erhöhter Empfindlichkeit in Abschnitt 6.5 wurde jedoch nicht angepasst. Gemeint sind wohl weiterhin die Vergabe der Zuschläge nur für Kurgebiete, Krankenhäuser und Pflegeanstalten (KU), für reine Wohngebiete (WR) sowie für allgemeine Wohngebiete und Kleinsiedlungsgebiete (WA). Dieses wird in den folgenden Berechnungen entsprechend berücksichtigt.

4 Berechnungsgrundlagen

Die Berechnungen erfolgen auf Grundlage der TA Lärm [TAL]. Entscheidend ist jeweils der Betriebszustand, der die höchsten Immissionen an den Immissionsorten erzeugt. Bei Windenergieanlagen muss dementsprechend für den ausgewählten Betriebsmodus der höchste Schallleistungspegel inkl. des Oktavbandspektrums von allen Windklassen ausgewählt werden. In dem höchsten Pegel müssen auch sämtliche Zuschläge enthalten sein, die aus den Vermessungen oder den Datenblättern des jeweiligen Herstellers hervorgehen. Diese Zuschläge (Tonzuschlag K_T oder Impulszuschlag K_T) werden entsprechend der LAI-Hinweise [LAI] oder den Länderregeln (hier die des Bundeslandes Nordrhein-Westfalen [WEA]) hinzuaddiert. Die Berechnung des oberen Vertrauensbereichs ist in Kapitel 6.5 detailliert beschrieben.

Alle Berechnungen erfolgen nach den Vorgaben einer detaillierten Prognose gemäß Anhang A.2.3 der TA Lärm [TAL]. Die Ausbreitungsberechnung erfolgt nach der DIN ISO 9613-2 [DINd] und der Ergänzung der Dokumentation zur Schallausbreitung – Interimsverfahren für Windenergieanlagen [Int]. Dieses Vorgehen ist durch die LAI-Hinweise [LAI] vorgegeben. Die Berechnung nach dem sog. Interimsverfahren gilt jedoch nur für Windenergieanlagen, die eine mittlere Quellhöhe von mehr als 30 m aufweisen. Die Bodendämpfung $A_{\rm gr}$ wird pauschal auf -3 dB gesetzt. Weiterhin geben die LAI-Hinweise vor, dass die Ausbreitungsberechnung bei einer Temperatur von +10°C und einer Luftfeuchtigkeit von 70% erfolgen muss. Hierbei handelt es sich um eine Worst-Case Betrachtung. Die meteorologische Korrektur $C_{\rm met}$ wird mit der Konstanten C_0 = 0 dB berechnet.

Da die Ausbreitungsberechnung spektral erfolgt, müssen die Werte der Luftabsorption α ebenfalls spektral angegeben werden. Diese werden der Tabelle 2 der DIN ISO 9613-2 [DINd] entnommen und sind nachfolgend für eine Temperatur von +10°C und einer Luftfeuchtigkeit von 70% dargestellt.

Tabelle 4.1: Luftdämpfungskoeffizienten α für die Oktavbänder gemäß DIN ISO 9613-2 [DINd]

31,5	63	125	250	500	1.000	2.000	4.000	8.000
v s					v s			
-	0,1	0,4	1,0	1,9	3,7	9,7	32,8	117,0

Windenergieanlagen mit einer mittleren Höhe von weniger als 30m und gewerbliche Betriebe werden streng nach den Vorgaben des alternativen Verfahrens der DIN ISO 9613-2 [DINd] berechnet. Die Windenergieanlagen werden als Punktschallquellen angenommen und die Schallausbreitung erfolgt anschließend nach dem Strahlenmodell zwischen den Quellen und den jeweiligen Immissionsorten. Auftretende Reflexionen und Abschirmungen an Gebäuden und am Gelände werden entsprechend der Regeln der Ländererlasse berücksichtigt. Die Approximation der Windenergieanlage als Punktschallquelle ist durch die Norm vorgegeben und mathematisch belegt. Bei den in den Prognosen berücksichtigten Entfernungen zwischen der Schallquelle und dem Immissionsort ist der Fehler vernachlässigbar klein [Mak11].

An allen betrachteten Immissionsorten werden die Teilpegel aller vorhandenen Schallquellen berücksichtigt. Die akustische Schallausbreitungsberechnung erfolgt in diesem Gutachten streng nach den geltenden gesetzlichen Vorgaben. Auf dem Schallausbreitungsweg gilt immer die Mitwindsituation, welches einer Worst-Case Betrachtung entspricht. Dämpfung durch Bewuchs gemäß Anhang A der DIN ISO 9613-2 [DINd] wird nicht betrachtet.

An den Immissionsorten kann es aufgrund der Worst-Case Annahmen zu einer Überschätzung des Beurteilungspegels auf bestimmten Schallausbreitungswegen kommen. Die Entwicklung des akustischen 3D-Modells und die anschließende Ausbreitungsberechnung erfolgt mit dem Berechnungsprogramm CadnaA der Firma DataKustik GmbH in der Version 2021 MR2 (64 bit – build 187.5163). Das gesamte Berechnungsmodell (Karten: DGK5, Höhen: DGM1 und Gebäudeumrisse: LoD1) basiert auf den Daten von OpenData.NRW [TNWRGMD21] in dem Gebiet von X: 388.005,0 m, Y: 5.763.358,8 m bis X: 394.837,5 m, Y: 5.768.989,1 m. Das detaillierte Berechnungsprotokoll inkl. der Berechnungskonfiguration ist in Anhang B dargestellt.

4.1 Vorbelastung durch Gewerbe- und Industrieanlagen

In diesem Abschnitt werden die in der schalltechnischen Prognose berücksichtigten gewerblichen Anlagen beschrieben, die im Sinne der TA Lärm [TAL] als Vorbelastung berücksicht werden müssen. Nach Rücksprache mit den zuständigen Genehmigungsbehörden werden 13 Gewerbequellen untersucht. Hierbei handelt es sich um zwei Biogasanlagen (BG), zwei allgemeinen Industrieanlagen (IN) und einer Tierhaltungsanlage (TH). In der folgenden Tabelle werden die gewerblichen Schallquellen kurz beschrieben und jeweils die Anzahl an Einzelquellen aus der Modellierung angegeben. Die relevanten schalltechnischen Kenngrößen werden in der Anlage D dargestellt.

Tabelle 4.2: Beschreibung der relevanten gewerblichen Schallquellen am Standort 48727 Billerbeck

ID	Art	Anzahl	Adresse	Beschreibung		
GE-01	IN	1	Bebauungsplan Nr. 22 2.	Industriegebiet gemäß		
			Änderung	Bebauungsplan Nr. 22 2.		
				Änderung, Betriebsgelände		
				Schmitz Cargobull		
GE-02	IN	1	Bebauungsplan Nr. 22 3.	Industriegebiet gemäß		
			Änderung	Bebauungsplan Nr. 22 3.		
				Änderung, Betriebsgelände		
				Schmitz Cargobull		
GE-03	IN	1	Bebauungsplan Nr. 60	Industriegebiet gemäß		
				Bebauungsplan Nr. 60,		
				Betriebsgelände Schmitz		
				Cargobull		
GE-04	IN	1	Bebauungsplan Nr. 60	Gewerbegebiet gemäß		
			Lange of the contract of the c	Bebauungsplan Nr. 60		
GE-05	IN	1	Bebauungsplan Nr. 22, 3.	Industriegebiet gemäß		
			Änderung	Bebauungsplan Nr. 22 3.		
				Änderung, Betriebsgelände		
				Schmitz Cargobull westlicher		
05.01				Bereich		
GE-06	IN	1	Bebauungsplan Nr. 22, 4.	Industriegebiet gemäß		
			Änderung	Bebauungsplan Nr. 22 4.		
				Änderung, Betriebsgelände		
				Schmitz Cargobull südlicher		
CE 07	TNI	1	Pohauunaanlan Nr 22 F	Bereich		
GE-07	IN	1	Bebauungsplan Nr. 22, 5.	Industriegebiet gemäß		
			Änderung	Bebauungsplan Nr. 22 5.		
				Änderung, Betriebsgelände Schmitz Cargobull		
				nordwestlicher Bereich		
GE-08	IN	1	Bebauungsplan Nr. 77	Industriegebiet gemäß		
GE-06	TIN	1	Bebaudingspidit Nr. 77	Bebauungsplan Nr. 77,		
				Section and the section of the secti		
	V.			Betriebsgelände Wecon		

Tabelle 4.2: Fortsetzung: Beschreibung der relevanten gewerblichen Schallquellen am Standort 48727 Billerbeck

ID	Art	Anzahl	Adresse	Beschreibung		
GE-09	IN	1	Bebauungsplan Nr. 91	Industriegebiet gemäß		
			Various 100	Bebauungsplan Nr. 91,		
	Z-			unbebaute Fläche		
GE-10	IN	1	Bebauungsplan Nr. 91	Gewerbegebiet gemäß		
				Bebauungsplan Nr. 91,		
				unbebaute Fläche		
GE-11	BG	1	Kümper 203, Altenberge	Aufgrund der Größe des		
				Biogas-BHKW, wurde als		
				Schallleistungspegel ein		
				Erfahrungswert von 90 dB(A		
				angesetzt.		
GE-12	BG	1	Temming 86, Billerbeck	Gemäß Vorgabe vom Kreis		
				Coesfeld wurde das BHKW		
				vollausschöpfend am		
				nächstgelegenen Wohnhaus		
				ausgelegt		
GE-13	TH	1	Temming 54, Billerbeck	Gemäß Vorgabe vom Kreis		
				Coesfeld wurde der		
				Schweinemaststall		
				vollausschöpfend am		
				nächstgelegenen Wohnhaus		
				ausgelegt		

4.2 Vorbelastung durch vorhandene Windenergieanlagen

Am Standort 48727 Billerbeck befinden sich 28 Windenergieanlagen, die als Vorbelastung im Sinne der TA Lärm [TAL] zu berücksichtigen sind. Die detaillierten Standortdaten mit den Koordinaten im System ETRS89 / UTM Zone 32N sind in der Anlage D angegeben. Diese Daten wurden von den zuständigen Immissionsschutzbehörden mitgeteilt. Die akustischen Kenndaten der Windenergieanlagen der Vorbelastung sind in der nachfolgenden Tabelle dargestellt.

Tabelle 4.3: Betriebsweisen der Vorbelastung im Nachtzeitraum

			Betriebsweise nachts				
ID	Hersteller	Тур	Modus	SLP	Zu- schlag	SLP gesamt	
\./E4.04		N44744		[dB(A)]	[dB]	[dB(A)]	
WEA 01	Nordex	N163/6.X	Mode	101,0	2,1	103,1	
Server account of the server of		NH:164m	101dB	With a second second	0.00000		
WEA 02	Nordex	N149/5.7	Mode	99,5	2,1	101,6	
		NH:125.4m	99.5dB				
WEA 03	Nordex	N149/5.7	Mode	101,5	2,1	103,6	
		NH:126.19m	101.5dB				
WEA 04	Nordex	N163/6.X	Mode	99,0	2,1	101,1	
		NH:164.51m	99dB				
WEA 05	Nordex	N163/6.X	Mode	104,0	2,1	106,1	
		NH:164.62m	104dB				
WEA 06	Nordex	N175/6.X	Mode	104,5	2,1	106,6	
		NH:179m	104.5dB	350	0.00	S.2.	
WEA-18	Vestas	V52 NH:74m	Mode	100,2	2,1	102,3	
			100.2dB				
WEA-19	Vestas	V52 NH:74m	Mode	100,2	2,1	102,3	
			100.2dB				
WEA-LO11	NEG MICON	NM 60/1000	Mode	98,7	2,1	100,8	
		NH:70m	98.7dB	37	13800	61900	
WEA-LO12	NEG MICON	NM 60/1000	Mode	98,7	2,1	100,8	
		NH:70m	98.7dB	7.	352	1553	
WEA-LO13	NEG MICON	NM 60/1000	Mode	98,7	2,1	100,8	
		NH:70m	98.7dB		**************************************	\$10°911906314**	
WEA-LO14	NEG MICON	NM 60/1000	Mode	98,7	2,1	100,8	
		NH:70m	98.7dB		100 T 100		
WEA-LO15	ENERCON	E-53	Mode	99,5	2,1	101,6	
	GmbH	NH:73.25m	99.5dB	0.50	95%		
WEA-LO16	ENERCON	E-53	Mode	101,4	1,6	103,0	
	GmbH	NH:73.25m	101.4dB	85	85	3.5	
WEA-LO17	NEG MICON	NM 60/1000	Mode	98,7	2,1	100,8	
	and the same transfer on the same state of the s	NH:70m	98.7dB	**************************************	1,000	and a contract of the Contract	

Tabelle 4.3: Fortsetzung: Betriebsweisen der Vorbelastung im Nachtzeitraum

			Е	Betriebswe	ise nacht	s
ID	Hersteller	Тур	Modus	SLP	Zu-	SLP
			Modus	SLF	schlag	gesamt
				[dB(A)]	[dB]	[dB(A)]
WEA-PT01	NEG MICON	NM 60/1000	Mode	100,5	0,0	100,5
		NH:70m	100.5dB			
WEA-PT02	NEG MICON	NM 60/1000	Mode	100,5	0,0	100,5
		NH:70m	100.5dB			
WEA-PT03	NEG MICON	NM 60/1000	Mode	100,5	0,0	100,5
		NH:70m	100.5dB			
WEA-PT04	NEG MICON	NM 60/1000	Mode	100,5	0,0	100,5
		NH:70m	100.5dB			
WEA-PT05	NEG MICON	NM 60/1000	Mode	100,5	0,0	100,5
		NH:70m	100.5dB			
WEA-PT08	NEG MICON	NM 60/1000	Mode	100,8	0,0	100,8
		NH:70m	100.8dB			
WEA-PT09	NEG MICON	NM 60/1000	Mode	100,8	0,0	100,8
		NH:70m	100.8dB			
WEA-PT10	NEG MICON	NM 60/1000	Mode	100,8	0,0	100,8
		NH:70m	100.8dB			
WEA-ST1	Nordex	N131/3000	Mode	100,8	1,4	102,2
Z1		NH:114m	100.8dB			
WEA-ST1	Nordex	N131/3000	Mode	100,4	1,4	101,8
Z2		NH:134m	100.4dB			
WEA	ENERCON	E-103 EP2	Mode	103,0	2,1	105,1
VB01Ken-	GmbH	NH:138.38m	103dB			
trup						
WEA	ENERCON	E-103 EP2	Mode	103,0	2,1	105,1
VB02Ken-	GmbH	NH:138.38m	103dB			
trup						
WEA	ENERCON	E-103 EP2	Mode	104,0	2,1	106,1
VB03Ken-	GmbH	NH:138.38m	104dB			
trup						

Die Oktavbandspektren der Windenergieanlagen für die jeweiligen Betriebsmodi sind im Anhang E dargestellt.

4.3 Windenergieanlagen der Zusatzbelastung

Die Zusatzbelastung besteht aus zwei Windenergieanlagen. Die anlagenspezifischen und akustischen Betriebskenndaten der untersuchten Windenergieanlagen finden sich in den Anhängen D bis E.

Für mindestens eine der untersuchten Windenergieanlagen liegt noch kein Messbericht vor. Die LAI-Hinweise [LAI] empfehlen unter Punkt 4.2 für noch nicht schalltechnisch vermessene Windenergieanlagen den Nachtbetrieb erst aufzunehmen, sobald ein Messbericht in dem genehmigten Modus für den Nachtbetrieb vorliegt. Angesetzt werden hier demnach die Produktstandardabweichung und die Messunsicherheit wie bei einer Einfachvermessung.

4.4 Abstände zwischen den Immissionsorten und den Windenergieanlagen

Aus den Koordinaten der untersuchten Immissionsorte ergeben sich die folgenden horizontalen Abstände zu den untersuchten Windenergieanlagen. Das Geländeprofil und die Höhe der Windenergieanlage sowie die der Immissionsorte bleibt hierbei unberücksichtigt.

Tabelle 4.4: Horizontale Abstände zwischen den Immissionsorten und den geplanten Windenergieanlagen.

	Horizontaler Abstand [m]						
ID	WEA T1	WEA T2					
IO-01	1.717	1.396					
IO-02	1.144	865					
IO-03	1.099	1.020					
IO-04	883	885					
IO-05	990	1.011					
IO-06	837	888					

Tabelle 4.4: Fortsetzung: Horizontale Abstände zwischen den Immissionsorten und den geplanten Windenergieanlagen.

	Horizontaler Abstand [m]					
ID	WEA T1	WEA T2				
IO-07	1.168	1.380				
IO-08	1.166	1.385				
IO-09	959	1.287				
IO-10	890	1.210				
IO-11	636	866				
IO-12	648	799				
IO-13	421	408				
IO-14	547	455				
IO-15	827	629				
IO-16	961					

Der geringste Abstand beträgt 408 m zwischen der untersuchten Windenergieanlage WEA T2 und dem Immissionsort IO-13.

5 Berechnungsergebnisse

In den folgenden Abschnitten werden die Berechnungsergebnisse für den Windpark "WP Temming" dargestellt. Die Ergebnisse sind aufgeteilt für den Tages- und Nachtzeitraum. Aufgrund der höheren Richtwerte im Tageszeitraum wird hier lediglich die Zusatzbelastung (ZB) betrachtet. Im Nachtzeitraum hingegen wird die Vorbelastung (VB), die Zusatzbelastung (ZB) und die Gesamtbelastung (GB) dargestellt. Die Grundlagen der Berechnungen sind in den vorangestellten Kapiteln beschrieben.

Die hier dargestellten Ergebnisse beziehen sich auf die meistbelastete Fassade des jeweiligen Immissionsortes. Gezeigt werden die höchsten Werte der Vorbelastung, Zusatzbelastung und Gesamtbelastung. Treten diese nicht an dem gleichen Immissionspunkt an der Fassade auf, werden beide Punkte angegeben.

In der Vorbelastung sind alle 28 bestehenden Windenergieanlagen und die gewerblichen Betriebe gemäß TA Lärm enthalten.

Die Zusatzbelastung enthält die zwei untersuchten Windenergieanlagen entsprechend der ausgewiesenen Betriebskonfiguration. Die Beurteilung der schalltechnischen Situation erfolgt nach den Vorgaben der TA Lärm [TAL]. Dafür werden die Berechnungsergebnisse in die Beurteilungspegel überführt. Dieses erfolgt durch eine Rundung auf den reinen ganzzahligen Wert gemäß der DIN 1333 [DINa].

5.1 Berechnungsergebnisse für den Tageszeitraum

Die Berechnungsergebnisse für den Tageszeitraum sind in der folgenden Tabelle 5.1 dargestellt.

Tabelle 5.1: Berechnungsergebnisse im Tageszeitraum der Vor-, Zusatz- und Gesamtbelastung für die Fassadenseite (F) und das Geschoss (G). Der Schalldruckpegel (W) und die mögliche Überschreitung (Ü) des Immissionsrichtwertes (IRW) sind in der Tabelle angegeben.

ID	F	G IRW		Zusc belas	
				W	Ü
			[dB(A)]	[dB(A)]	[dB]
IO-01	s1	EG	60	34,9	49

Tabelle 5.1: Fortsetzung: Berechnungsergebnisse im Tageszeitraum der Vor-, Zusatzund Gesamtbelastung für die Fassadenseite (F) und das Geschoss (G). Der Schalldruckpegel (W) und die mögliche Überschreitung (Ü) des Immissionsrichtwertes (IRW) sind in der Tabelle angegeben.

ID	F	G	IRW	Zusatz- belastung	
	6			w	ΰ
	0		[dB(A)]	[dB(A)]	[dB]
IO-02	s1	1.0G	60	39,8	=
IO-03	sw3	EG	60	39,1	<u>==</u> {3
IO-04	sw5	1.0G	60	43,4	57 %
IO-05	s3	EG	60	40,2	æ
IO-06	s 4	1.0G	60	41,2	=
IO-07	sw1	EG	60	39,1	-
IO-08	nw3	EG	60	38,6	-
IO-09	nw1	EG	60	38,8	 /
IO-10	sw5	EG	60	39,4	
IO-11	no1	1.0G	60	42,9	=
IO-12	nw1	EG	60	45,1	<u></u> 3
IO-13	so1	EG	60	48,2	=
IO-14	no7	1.0G	60	46,8	
IO-15	so1	EG	60	45,3	=
IO-16	s3	EG	60	41,0	 .:

5.2 Berechnungsergebnisse für den Nachtzeitraum

Die Berechnungsergebnisse für die lauteste volle Nachtstunde sind in der Tabelle 5.2 angegeben.

Tabelle 5.2: Berechnungsergebnisse im Nachtzeitraum der Vor-, Zusatz- und Gesamtbelastung für die Fassadenseite (F) und das Geschoss (G). Der Schalldruckpegel (W) und die mögliche Überschreitung (Ü) des Immissionsrichtwertes (IRW) sind in der Tabelle angegeben.

÷				Vo	r-	Zusc	atz-	Gesc	ımt-
ID	F	G	IRW	belas	tung	belas	tung	belas	tung
				W	Ü	W	Ü	W	Ü
	0		[dB(A)]	[dB(A)]	[dB]	[dB(A)]	[dB]	[dB(A)]	[dB]
IO-01	s2	1.0G	45	40,2	=0	29,7	-	40,5	37=37
IO-02	s1	1.0G	45	44,2	20	34,8		44,6	-
IO-03	no5	EG	45	45,9	0,9	17,3		45,9	0,9
IO-03	sw7	EG	45	45,3	0,3	35,0	-8	45,7	0,7
IO-04	sw8	2.OG	45	45,6	0,6	35,3	-	46,0	1,0
IO-04	sw5	1.0G	45	45,0	-	37,7	-	45,8	0,8
IO-05	s1	EG	45	45,3	0,3	33,9	-	45,6	0,6
IO-05	s3	EG	45	45,0	=0	34,3	i — ii	45,4	0,4
IO-06	s2	1.0G	45	46,9	1,9	35,3	- - 0	47,2	2,2
IO-07	nw1	1.0G	45	46,6	1,6	31,0		46,8	1,8
IO-07	sw1	EG	45	44,8		33,1		45,1	0,1
IO-08	nw5	1.0G	45	46,8	1,8	30,9	-	46,9	1,9
IO-08	nw3	EG	45	45,8	0,8	32,5	-	46,0	1,0
IO-09	no1	EG	45	45,9	0,9	24,9	-	46,0	1,0
IO-09	nw1	EG	45	44,3	-	32,4		44,6	-
IO-10	nw1	EG	45	45,0	<u> </u>	31,1	-8	45,1	0,1
IO-10	sw5	EG	45	42,8	=	33,0	-	43,2	U=8
IO-11	no1	2.OG	45	42,9	=	36,6		43,8	5 — 6
IO-12	nw1	EG	45	41,7	<u> </u>	38,8	-	43,5	-
IO-13	no2	1.0G	45	42,9	-0	42,6		45,8	0,8
IO-14	no7	2.OG	45	42,4	=	41,5	-	45,0	-
IO-15	so3	1.0G	45	43,8	==0	38,4		44,9	-
IO-15	so1	EG	45	39,3	<u>=</u> 3	40,2		42,8	31 — 33
IO-16	s2	1.0G	45	41,9	==	33,7	-	42,5	10=15
IO-16	s3	EG	45	41,1		35,9		42,3	7-0

5.3 Abschirmung und Reflexion

Die Berechnung der Schallausbreitung erfolgt unter Berücksichtigung von Abschirmung und Reflexion auf dem Ausbreitungsweg zwischen der Quelle und dem jeweiligen Immissionsort.

Die auftretenden Reflexionen und Abschirmungen sind für den Nachtzeitraum untersucht worden. Die folgende Tabelle listet das Auftreten von Abschirmung (A) und Reflexion (R) von jeder Quelle zu jedem Immissionsort auf.

Die Gebäudefassaden wurden in den Berechnungen als glatte Hausfassade angesetzt, sodass beim Autreten einer Reflexion eine generell konservative Betrachtung stattfindet.

Tabelle 5.3: Auftreten einer Abschirmung (A) und Reflexion (R) auf dem Schallweg zwischen der Windenergieanlage und dem Immissionsort für den Nachtzeitraum.

TD	F	G	WE	A T1	WE	A T2
ID		G	Α	R	Α	R
IO-01	s2	1.0G	-	1 -	=	-
IO-02	s1	1.0G	H	-	-	_
IO-03	no5	EG	ja	-	ja	-
IO-03	sw7	EG	ja	ja	-	ja
IO-04	sw8	2.OG	=	-	-	-
IO-04	sw5	1.0G	—	ja	-	ja
IO-05	s1	EG	44 5	-	-	-
IO-05	s3	EG		ja	-	-
IO-06	s2	1.0G	_	_	_	_
IO-07	nw1	1.0G	-	-	-	-
IO-07	sw1	EG	-	ja	-	ja
IO-08	nw5	1.0G	-	-	-	-
IO-08	nw3	EG	s Service	ja	-	ja
IO-09	no1	EG	ja	-	ja	_
IO-09	nw1	EG	 2	×-	=	- ×
IO-10	nw1	EG	14 0		ja	
IO-10	sw5	EG		-	-	-
IO-11	no1	2.OG	=	-	-	-
IO-12	nw1	EG	-	ja	-	ja

Tabelle 5.3: Fortsetzung: Auftreten einer Abschirmung (A) und Reflexion (R) auf dem Schallweg zwischen der Windenergieanlage und dem Immissionsort für den Nachtzeitraum.

TD	_	_	WE	A T1	WE	A T2
ID	F	G	Α	R	Α	R
IO-13	no2	1.0G		=	-	=
IO-14	no7	2.OG	-	-	-	-
IO-15	so3	1.0G	-	ja	()	_
IO-15	so1	EG	-	ja		ja
IO-16	s2	1.0G	-		-	-
IO-16	s3	EG	-	ja	-	ja

6 Beurteilung der schalltechnischen Situation

Die Beurteilung der schalltechnischen Situation erfolgt nach den Vorgaben der TA Lärm [TAL]. Dafür werden die Berechnungsergebnisse aus Kapitel 5 in die Beurteilungspegel überführt. Dieses erfolgt durch eine Rundung auf den reinen ganzzahligen Wert gemäß der DIN 1333 [DINa]. Die Beurteilungspegel werden den Immissionsrichtwerten (IRW) der TA Lärm [TAL] gegenübergestellt.

6.1 Beurteilung des Tageszeitraums

Für den Tageszeitraum sind die Beurteilungspegel in Relation zu den Immissionsrichtwerten der TA Lärm [TAL] dargestellt.

Tabelle 6.1: Beurteilungspegel im Tageszeitraum der Vor-, Zusatz- und Gesamtbelastung für die Fassadenseite (F) und das Geschoss (G). Der Beurteilungspegel (B) und die Überschreitung (Ü) des Immissionsrichtwertes (IRW) sind in der Tabelle angegeben. Negative Überschreitungswerte signalisieren eine Unterschreitung des IRW.

ID	F	G	IRW	Zusa belas	
	3.			В	Ü
			[dB(A)]	[dB(A)]	[dB]
IO-01	s1	EG	60	35	-25
IO-02	s1	1.0G	60	40	-20
IO-03	sw3	EG	60	39	-21
IO-04	sw5	1.0G	60	43	-17
IO-05	s3	EG	60	40	-20
IO-06	s4	1.0G	60	41	-19
IO-07	sw1	EG	60	39	-21
IO-08	nw3	EG	60	39	-21
IO-09	nw1	EG	60	39	-21
IO-10	sw5	EG	60	39	-21

Tabelle 6.1: Fortsetzung: Beurteilungspegel im Tageszeitraum der Vor-, Zusatz- und Gesamtbelastung für die Fassadenseite (F) und das Geschoss (G). Der Beurteilungspegel (B) und die Überschreitung (Ü) des Immissionsrichtwertes (IRW) sind in der Tabelle angegeben. Negative Überschreitungswerte signalisieren eine Unterschreitung des IRW.

ID	F	G	IRW	Zusatz- belastung	
	1			В	Ü
	-1		[dB(A)]	[dB(A)]	[dB]
IO-11	no1	1.0G	60	43	-17
IO-12	nw1	EG	60	45	-15
IO-13	so1	EG	60	48	-12
IO-14	no7	1.0G	60	47	-13
IO-15	so1	EG	60	45	-15
IO-16	s3	EG	60	41	-19

Im Tageszeitraum liegt die Zusatzbelastung an dem Immissionsort IO-13 mindestens -12,0 dB unterhalb der Immissionsrichtwerte der TA Lärm [TAL]. Somit liegen alle betrachteten Immissionsorte außerhalb des Einwirkungsbereiches der Windenergieanlagen der Zusatzbelastung.

6.2 Beurteilung des Nachtzeitraums

Im Nachtzeitraum sind die Beurteilungspegel für die lauteste volle Nachtstunde in der folgenden Tabelle 6.2 den Immissionsrichtwerten der TA Lärm [TAL] gegenübergestellt.

Tabelle 6.2: Beurteilungspegel im Nachtzeitraum der Vor-, Zusatz- und Gesamtbelastung für die Fassadenseite (F) und das Geschoss (G). Der Beurteilungspegel (B) und die Überschreitung (Ü) des Immissionsrichtwertes (IRW) sind in der Tabelle angegeben. Negative Überschreitungswerte signalisieren eine Unterschreitung des IRW.

				Vo	or-	Zus	atz-	Gesc	amt-
ID	F	G	IRW	belas	tung	belas	tung	belas	tung
				В	Ü	В	Ü	В	Ü
	-1		[dB(A)]	[dB(A)]	[dB]	[dB(A)]	[dB]	[dB(A)]	[dB]
IO-01	s2	1.0G	45	40	-5	30	-15	41	-4
IO-02	s1	1.0G	45	44	-1	35	-10	45	0
IO-03	no5	EG	45	46	1	17	-28	46	1
IO-03	sw7	EG	45	45	0	35	-10	46	1
IO-04	sw8	2.OG	45	46	1	35	-10	46	1
IO-04	sw5	1.0G	45	45	0	38	-7	46	1
IO-05	s1	EG	45	45	0	34	-11	46	1
IO-05	s3	EG	45	45	0	34	-11	45	0
IO-06	s2	1.0G	45	47	2	35	-10	47	2
IO-07	nw1	1.0G	45	47	2	31	-14	47	2
IO-07	sw1	EG	45	45	0	33	-12	45	0
IO-08	nw5	1.0G	45	47	2	31	-14	47	2
IO-08	nw3	EG	45	46	1	33	-12	46	1
IO-09	no1	EG	45	46	1	25	-20	46	1
IO-09	nw1	EG	45	44	-1	32	-13	45	0
IO-10	nw1	EG	45	45	0	31	-14	45	0
IO-10	sw5	EG	45	43	-2	33	-12	43	-2
IO-11	no1	2.OG	45	43	-2	37	-8	44	-1
IO-12	nw1	EG	45	42	-3	39	-6	44	-1
IO-13	no2	1.0G	45	43	-2	43	-2	46	1
IO-14	no7	2.OG	45	42	-3	42	-3	45	0
IO-15	so3	1.0G	45	44	-1	38	-7	45	0
IO-15	so1	EG	45	39	-6	40	-5	43	-2
IO-16	s2	1.0G	45	42	-3	34	-11	43	-2
IO-16	s3	EG	45	41	-4	36	-9	42	-3

Die Beurteilung der relevanten Immissionsorte nach TA Lärm [TAL] ist in der Tabelle 6.3 für den Nachtzeitraum angegeben.

Tabelle 6.3: Beurteilung der relevanten Immissionsorte gemäß TA Lärm [TAL] für die Fassade (F) und das Geschoss (G).

ID	F	G	Beurteilung
IO-01	s2	1.0G	Die Zusatzbelastung liegt mindestens 15 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des erweiterten Einwirkbe-
			reiches nach TA Lärm.
IO-02	s1	1.0G	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
			TA Lärm.
IO-03	no5	EG	Die Zusatzbelastung liegt mindestens 15 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des erweiterten Einwirkbe-
			reiches nach TA Lärm.
IO-03	sw7	EG	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
			TA Lärm.
IO-04	sw8	2.OG	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
			TA Lärm.
IO-04	sw5	1.0G	Eine Überschreitung von 1 dB ist gemäß Absatz 3.2.1 Satz 3
			TA Lärm zulässig.
IO-05	s1	EG	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
			TA Lärm.
IO-05	s3	EG	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
			TA Lärm.
IO-06	s2	1.0G	Die Vorbelastung überschreitet unzulässig, jedoch liegt die Zu-
			satzbelastung 10 dB unter dem Immissionsrichtwert und damit
10+00-400 (000000000			außerhalb des Einwirkbereiches nach TA Lärm.
IO-07	nw1	1.0G	Die Vorbelastung überschreitet unzulässig, jedoch liegt die Zu-
			satzbelastung 10 dB unter dem Immissionsrichtwert und damit
			außerhalb des Einwirkbereiches nach TA Lärm.

Tabelle 6.3: Fortsetzung: Beurteilung der relevanten Immissionsorte gemäß TA Lärm [TAL] für die Fassade (F) und das Geschoss (G).

ID	F	G	Beurteilung
IO-07	sw1	EG	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
			TA Lärm.
IO-08	nw5	1.0G	Die Vorbelastung überschreitet unzulässig, jedoch liegt die Zu-
			satzbelastung 10 dB unter dem Immissionsrichtwert und damit
			außerhalb des Einwirkbereiches nach TA Lärm.
IO-08	nw3	EG	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
j-		: :-	TA Lärm.
IO-09	no1	EG	Die Zusatzbelastung liegt mindestens 15 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des erweiterten Einwirkbe-
			reiches nach TA Lärm.
IO-09	nw1	EG	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
			TA Lärm.
IO-10	nw1	EG	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
			TA Lärm.
IO-10	sw5	EG	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
			TA Lärm.
IO-11	no1	2.OG	9 28-9 (1) - ALCO (1) (1) - SA 24 (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
IO-12	nw1	EG	Der Immissionsrichtwert der TA Lärm ist eingehalten.
IO-13	no2	1.0G	Eine Überschreitung von 1 dB ist gemäß Absatz 3.2.1 Satz 3
			TA Lärm zulässig.
IO-14	no7	2.OG	Der Immissionsrichtwert der TA Lärm ist eingehalten.
IO-15	so3	1.0G	Der Immissionsrichtwert der TA Lärm ist eingehalten.
IO-15	so1	EG	Der Immissionsrichtwert der TA Lärm ist eingehalten.
IO-16	s2	1.0G	Die Zusatzbelastung liegt mindestens 10 dB unter dem Immissi-
			onsrichtwert und damit außerhalb des Einwirkbereiches nach
			TA Lärm.
IO-16	s3	EG	Der Immissionsrichtwert der TA Lärm ist eingehalten.

6.3 Beurteilung Gesamtbetrachtung

Die Vorgaben der TA Lärm [TAL] werden eingehalten unter der Voraussetzung, dass die Windenergieanlagen in den folgenden Modi betrieben werden.

Tabelle 6.4: Auflistung der Betriebsmodi für die Zusatzbelastung

ID	Betriebsmodus tags	Betriebsmodus nachts
WEA T1	Mode 0	Mode 14
WEA T2	Mode 0	Mode 9

6.4 Spitzenpegel

Windenergieanlagen sind kontinuierlich laufende Maschinen. Spitzenpegelüberschreitungen von 30 dB im Tageszeitraum und von 20 dB im Nachtzeitraum sind im Regelbetrieb nicht zu erwarten. Dieses wird durch eine Vielzahl an Vermessungen unterschiedlicher Anlagentypen gezeigt. Die Betriebsgeräusche, wie die Azimutverstellung, Lüfter und Hydraulik, sind in der Regel unauffällig.

6.5 Abschätzung der Genauigkeit der Prognose

Prognosen sind immer mit einer gewissen Unsicherheit behaftet. Die TA Lärm [TAL] fordert daher in Anhang A2.6 entsprechende Aussagen zu der Genauigkeit, damit die Einhaltung der Immissionsrichtwerte der TA Lärm [TAL] sichergestellt werden kann.

- Die Ungenauigkeit einer normkonformen Vermessung des Schallleistungspegels einer Windenergieanlage nach FGW-Richtlinie wird mit σ_R =0,5 dB angegeben.
- Nicht jedes Serienprodukt ist technisch identisch. Dies gilt auch für Windenergieanlagen. Der Schallleistungspegel und das Oktavbandspektrum von einer vermessenen Windenergieanlage kann somit nicht auf eine andere Windenergieanlage
 übertragen werden. Für eine nur einfach vermessene Windenergieanlage wird
 eine Serienstreuung von σ_P=1,2 dB angenommen. Bei einer direkt vermessenen

Windenergieanlage ist eine Produktstandartabweichung von σ_P =0 dB anzusetzen. Liegt jedoch eine Mehrfachvermessung mit mindestens drei Vermessungen des Anlagentyps im gleichen Betriebsmodus und gleicher technischer Ausstattung vor, kann für σ_P die Standardabweichung s der Messwerte angesetzt werden.

$$\sigma_P = s = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} \left(L_n - \bar{L}_W \right)}$$

mit dem arithmetischen Mittelwert \bar{L}_W der einzelnen Schallleistungspegel L_n

$$\bar{L}_W = \sum_{n=1}^N \frac{L_n}{N}$$

• In den LAI-Hinweisen [LAI] wird die Prognoseunsicherheit für Schallausbreitungsberechnungen nach dem Verfahren der DIN ISO 9613-2 [DINd] mit σ_{Prog} =1,0 dB anzusetzen.

Die Gesamtunsicherheit $\sigma_{\rm ges}$ berechnet sich nach folgender Gleichung unter Einbeziehung der einzelnen Unsicherheiten, die bereits oben beschrieben wurden.

$$\sigma_{ges} = \sqrt{\sigma_R^2 + \sigma_P^2 + \sigma_{Prog}^2}$$

Aus der Gesamtunsicherheit wird der obere Vertrauensbereich SZ für die Prognose mit einem Vertrauensniveau von 90 % berechnet. Der Faktor 1,28 entspricht dem 90 %-igen Vertrauensniveau bei normalverteilten Zufallsgrößen.

$$SZ = \Delta L = 1,28\sigma_{qes}$$

Der immissionsrelevante Schallleistungspegel \bar{L}_o für die Prognose berechnet sich dementsprechend wie folgt.

$$\bar{L}_o = \bar{L}_{\text{WA}} + 1,28\sigma_{qes}$$

Die Addition des Sicherheitszuschlages kann entweder auf die Teilpegel der einzelnen Windenergieanlagen am Immissionsort oder direkt auf den Schallleistungspegel L_{WA} der jeweiligen Windenergieanlage erfolgen. Das zugehörige Oktavbandspektrum wird entsprechend des immissionsrelevanten Pegels inkl. des oberen Vertrauensbereiches L_{\circ} normiert.

Für die Oktavbandpegel gilt der gleiche Zusammenhang. Auch hier kann der obere Vertrauensbereich auf die einzelnen Pegel der Oktaven $\bar{L}_{W,Okt}$ addiert werden.

7 Infraschall und tieffrequente Geräusche

In der Literatur wird häufig angegeben, dass der Mensch Töne und Geräusche zwischen 20 Hz und 20 kHz über das Ohr hören kann [ZF99]. Zudem haben Hörversuche ergeben, dass das menschliche Gehör auch Töne unterhalb von 20 Hz wahrnehmen kann, allerdings mit stark steigendem Schalldruckpegel. Die Daten zeigen jedoch einen individuellen Verlauf der Wahrnehmungsschwelle bei den Probanden ([YE74] und [MP04]). Dadurch entstehen größere Unsicherheiten beim Festlegen einer allgemeingültigen Wahrnehmungsschwelle. Die aktuellste Messung der Hörschwelle zwischen 2,5 Hz und 125 Hz wurde mit einem speziellen Einsteckkopfhörer durchgeführt, der sehr hohe Schalldruckpegel ohne Verzerrungen direkt in dem Gehörgang erzeugen konnte. Gemessen wurde hier die Hörschwelle und nicht die Wahrnehmungsschwelle, da keine weiteren Körperregionen von dem Infraschall betroffen waren. Die gemessene Hörschwelle deckt sich mit den bereits in der Literatur beschriebenen Schwellen [KFH15]. Eine Studie von [HSH+07] zeigt, dass Infraschall vom menschlichen Innenohr aufgenommen und auch verarbeitet wird. Neuere Studien zeigen, dass Infraschalldarbietungen an der individuellen Hörschwelle zu Abbildungen im auditorischen Cortex und anderen Regionen des menschlichen Gehirns führen [WBK+17].

In der Natur tritt Infraschall durch eine Vielzahl von Quellen wie Wind, die Meeresbrandung und durch Wetterlagen auf. Hinzu kommen technische Quellen wie zum Beispiel Windenergieanlagen, Biogasanlagen und Umspannwerke. Die technischen Quellen zeigen im zeitlich-spektralen Verlauf (Spektrogramm) meist charakteristische Ausprägungen bei einzelnen Frequenzen, die der Drehzahl der Rotoren zugeordnet werden können [BKH⁺20], wohingegen die natürlichen Quellen in der Regel rein stochastisch sind [KADLM⁺20].

Infraschall entsteht, wenn entweder große Luftmassen oder Oberflächen in periodische Bewegungen versetzt werden. Somit kann er sich sowohl über die Luft, als auch über den Boden ausbreiten. Aufgrund der großen Wellenlänge bei Infraschall können sich in normalen Raumgrößen von Wohnungen in der Regel keine stehenden Wellen ausbilden, in sehr großen Räumen jedoch möglich. Infraschall wird daher eher als periodisches Auf- und Abklingen des Luftdrucks wahrgenommen und beschrieben [KADLM⁺20].

In der Studie [WKB⁺15] wurde untersucht, inwieweit die Darbietung von Infraschall bei Probanden die Gedächtnisleistung und Konzentrationsfähigkeit beeinflusst. Das Ergebnis zeigt, dass es keine signifikanten negativen Auswirkungen gibt. Gestützt wurden die

Ergebnisse durch eine parallele funktionale Magnetresonanztomographie (fMRT).

Eine erste Untersuchung zur Wahrnehmung von Infraschall verursacht durch Windenergieanlagen wurde von [YST14] durchgeführt. Darin wurde festgestellt, dass sich die Wahrnehmungsschwellen von Geräuschen von Windenergieanlagen und reinen Sinustönen nicht unterscheiden und demnach entsprechend hohe Schalldruckpegel vorliegen müssen, ehe eine Wahrnehmung bei den Probanden eintritt.

Von Seiten der Bevölkerung liegen den örtlichen Immissionsschutzbehörden immer wieder Beschwerden vor. Die umfangreiche Studie des Umweltbundesamtes [KADLM⁺20] listet erstmals auf, in welchen Situationen es zu den Beschwerden kommt. Die häufigsten Beschwerden mit 33 % sind auf Windenergieanlagen zur Energieerzeugung und -transport zurückzuführen, gefolgt von raumlufttechnischen Windenergieanlagen mit 23 %.

Eine Übersicht zum Thema des umweltbezogenen Gesundheitsschutzes bezogen auf Infraschall und tieffrequente Geräusche fasst die bis zum Erscheinungszeitpunkt erschienene Literatur zusammen und gibt einige Empfehlungen heraus [MHMN07]. Die Studie bezieht alle technischen Infraschallquellen mit ein und ist nicht speziell auf Windenergieanlagen bezogen. Die Studie verweist darauf, dass es keine Hinweise gibt, dass Hörschäden ausschließlich durch Infraschall verursacht werden können. Es wird allerdings empfohlen, dass der Infraschall in Schlafräumen 10 dB unterhalb der Hörschwelle liegen sollte. Die große Messreihe der Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW) hat eine Vielzahl technischer Infraschallquellen, u.a. auch Windenergieanlagen, in verschiedenen Abständen vermessen, und kommt zu dem Ergebnis, dass die Pegel immer mehr als 10 dB für Frequenzen kleiner als 20 Hz unterhalb der Hörschwelle liegen [RBB+16].

Der Review-Artikel [KB18] fasst die verfügbare Literatur zu Gesundheitseffekten hervorgerufen durch Windenergieanlagen zusammen. Es wird beschreiben, dass Windenergieanlagen teilweise als störend empfunden werden können, jedoch werden keine gesundheitlichen Schäden beschrieben. Dieses betrifft auch auf den Infraschall zu.

Eine großangelegte Studie aus Finnland zeigt im ersten Teil eine umfangreiche Literaturrecherche, die jedoch keinerlei Hinweise darauf gibt, dass es zu gesundheitlich negativen Effekten durch Windenergieanlagen bezogen auf Schall und Infraschall gekommen ist [MTK⁺20]. Allerdings gibt es eine kleine Anzahl an Veröffentlichungen, die weiteren Forschungsbedarf sehen. Der zweite Teil dieser Studie bezieht sich auf eigene in Finnland durchgeführte Messungen und Analysen. Er wurde gezeigt, dass der Infraschallpegel unterhalb von 2 Hz in Anwesenheit von Windenergieanlagen um ca. 20 dB höher liegt, als in ruhigen Umgebungen, aber immer noch deutlich unterhalb der menschlichen Wahr-

nehmungsschwelle. Vereinzelt wurden in Befragungen von Anwohnern verschiedene Symptome beschrieben, die jedoch alle Organe umfassten. Physiologische Messungen der Vitalparameter zeigen keine Effekte im Vergleich zu einer Kontrollgruppe.

Die DIN 45860 [DINb], mit welcher in Deutschland die tieffrequenten Geräusche bewertet und beurteilt werden, ist derzeit in der Überarbeitung mit dem neusten Entwurf aus Juni 2020 [DINc]. Gültig ist weiterhin die Norm aus dem Jahr 1997 [DINb]. Basis der Bewertung ist in der aktuell noch gültigen Fassung noch die Hörschwelle zwischen 8 Hz und 100 Hz. Zwischenzeitlich wurde in den neuen Entwürfen zu der Norm die Wahrnehmungsschwelle diskutiert. Der aktuelle Entwurf sieht von einem Vergleich mit der Hör- oder Wahrnehmungsschwelle ab. Der Entwurf ist allerdings immer noch in der Diskussion.

Bislang existiert kein standardisiertes Berechnungsverfahren zur Entstehung und Ausbreitung von Infraschall im Freien. Mittel der Wahl bei Problemen und Beschwerden ist weiterhin die Messung von Infraschall in den betroffenen Innenräumen [KADLM⁺20] mit der anschließenden Bewertung nach DIN 45680:1997 [DINb].

8 Interaktive Karte

Die interaktive Karte dient der Darstellung aller bedeutenden Ergebnisse des Berichtes. Sowohl alle relevanten Windenergieanlagen der Vor- und Zusatzbelastung, die berücksichtigte gewerbliche Vorbelastung als auch die untersuchten Immissionsorte sind in der Karte berücksichtigt. Durch die intuitive Bedienung und der Möglichkeit des individuellen Zooms lässt sich die Schallsituation im Detail analysieren. Durch einen Klick auf die Windenergieanlagen öffnet sich ein Fenster mit den technischen und schalltechnischen Daten der Anlage. Hierbei wird jeweils das verwendete Oktavbandspektrum visualisiert. Gleiches gilt für den Klick auf die untersuchten Immissionsorte. Hier werden die relevanten Ergebnisse für den Standort beschrieben und die schalltechnische Situation individuell begutachtet. Auch bei einem Klick auf die orange markierten gewerblichen Quellen öffnet sich ein Fenster, in dem alle Eigenschaften der Schallquelle zusammengefasst werden. Das Menü oben auf der rechten Seite dient zur Auswahl verschiedener weiterer Ansichten. Einzelne Windenergieanlagen lassen sich aus- oder einblenden. Über die Auswahl können Rasterlärmkarten dargestellt werden. Hiermit lassen sich Bereiche, bei denen eine Überschreitung der gesetzlich festgelegten Grenzwerte auftritt, analysieren. Schalltechnisch komplexe Bereiche können somit einfacher veranschaulicht werden. Es wird zwischen der Vor-, Zusatz- und Gesamtbelastung am Tag bzw. in der

Nacht unterschieden.

Das Öffnen der interaktiven Karten funktioniert nur über den Adobe Acrobat Reader.

9 Ortstermin

Der Ortstermin wurde am 13.11.2023 von André Raming (M.Eng.) durchgeführt. Dieser Termin diente dazu, festzustellen, ob die Informationen vor Ort dem entsprechen, was aus dem Kartenmaterial und den Luftbildern im Vorfeld entnommen werden konnte. Neue Gebäude, Siedlungen oder Windenergieanlagen der Vorbelastung können so gefunden und entsprechend berücksichtigt werden.

9.1 Besichtigungsbilder IO-01

Abbildung 9.1: Nordansicht IO-01 (Westenfeld 14; 48341 Altenberge)

9.2 Besichtigungsbilder IO-02

Abbildung 9.2: Westansicht IO-02 (Westenfeld 12; 48341 Altenberge)

9.3 Besichtigungsbilder IO-03

Abbildung 9.3: Süd-Ostansicht IO-03 (Kümper 204; 48341 Altenberge)

9.4 Besichtigungsbilder IO-04

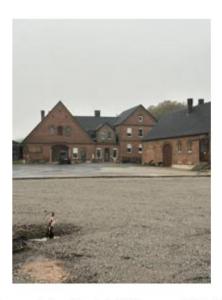


Abbildung 9.4: Ostansicht IO-04 (Kümper 203; 48341 Altenberge)

9.5 Besichtigungsbilder IO-05

Abbildung 9.5: Westansicht IO-05 (Kümper 203b; 48341 Altenberge)

9.6 Besichtigungsbilder IO-06

Abbildung 9.6: Süd-Ostansicht IO-06 (Kümper 203a; 48341 Altenberge)

9.7 Besichtigungsbilder IO-07

Abbildung 9.7: Südansicht IO-07 (Kümper 155; 48341 Altenberge)

9.8 Besichtigungsbilder IO-08

Abbildung 9.8: Ostansicht IO-08 (Kümper 155 (Neubau); 48341 Altenberge)

9.9 Besichtigungsbilder IO-09

Abbildung 9.9: Nord-Westansicht IO-09 (Temming 80; 48727 Billerbeck)

9.10 Besichtigungsbilder IO-10

Abbildung 9.10: Süd-Westansicht IO-10 (Temming 86; 48727 Billerbeck)

9.11 Besichtigungsbilder IO-11

Abbildung 9.11: Nord-Ostansicht IO-11 (Temming 49; 48727 Billerbeck)

9.12 Besichtigungsbilder IO-12

Abbildung 9.12: Nord-Ostansicht IO-12 (Temming 50; 48727 Billerbeck)

9.13 Besichtigungsbilder IO-13

Abbildung 9.13: Nord-Ostansicht IO-13 (Temming 51; 48727 Billerbeck)

9.14 Besichtigungsbilder IO-14

Abbildung 9.14: Südansicht IO-14 (Temming 52; 48727 Billerbeck)

9.15 Besichtigungsbilder IO-15

Abbildung 9.15: Nord-Ostansicht IO-15 (Temming 56; 48727 Billerbeck)

9.16 Besichtigungsbilder IO-16

Abbildung 9.16: Westansicht IO-16 (Temming 58; 48727 Billerbeck)

Literaturverzeichnis

[BKH⁺20] Blumendeller, Esther; Kimmig, Ivo; Huber, Gerhard; Rettler, Philipp

; Cheng, Po W.: Investigations on Low Frequency Noises of On-Shore Wind Turbines. In: Acoustics 2 (2020), Nr. 2, 343–365. http://dx.doi.org/10.3390/acoustics2020020. – DOI 10.3390/acoustics2020020. –

ISSN 2624-599X

[DINa] DIN 1333:1992-02 - Zahlenangaben

[DINb] DIN 45680:1997-03 - Messung und Bewertung tieffrequenter Ge-

räuschimmissionen in der Nachbarschaft

[DINc] DIN 45680:2020-06 - Entwurf - Messung und Beurteilung tieffrequenter

Geräuschimmissionen

[DINd] DIN ISO 9613-2:1999-10 - Akustik - Dämpfung des Schalls bei der Aus-

breitung im Freien - Teil 2: Allgemeines Berechnungsverfahren

[HSH⁺07] Hensel, Johannes ; Scholz, Günther ; Hurttig, Ulrike ; Mrowinski, Die-

ter; Janssen, Thomas: Impact of infrasound on the human cochlea. In: Hearing Research 233 (2007), Nr. 1, 67-76. http://dx.doi.org/https://doi.org/10.1016/j.heares.2007.07.004. - DOI https://-

doi.org/10.1016/j.heares.2007.07.004. - ISSN 0378-5955

[Int] Dokumentation zur Schallausbreitung - Interimsverfahren zur Prognose

der Geräuschimmissionen von Windkraftanlagen, Fassung 2015-05.1

[KADLM⁺20] Krahé, Detlef; Alaimo Di Loro, Alexander; Müller, Uwe; Elmenhorst,

Eva-Maria ; De Gioannis, Riccardo ; Schmitt, Stefan ; Belke, Christin ; Benz, Sarah ; Großarth, Stephan ; Schreckenberg, Dirk ; Eulitz, Christian ; Wiercinski, Bianca ; Möhler, Ulrich: Lärmwirkungen von Infraschallim-

missionen. Umweltbundesamt, 2020 (TEXTE 163/2020)

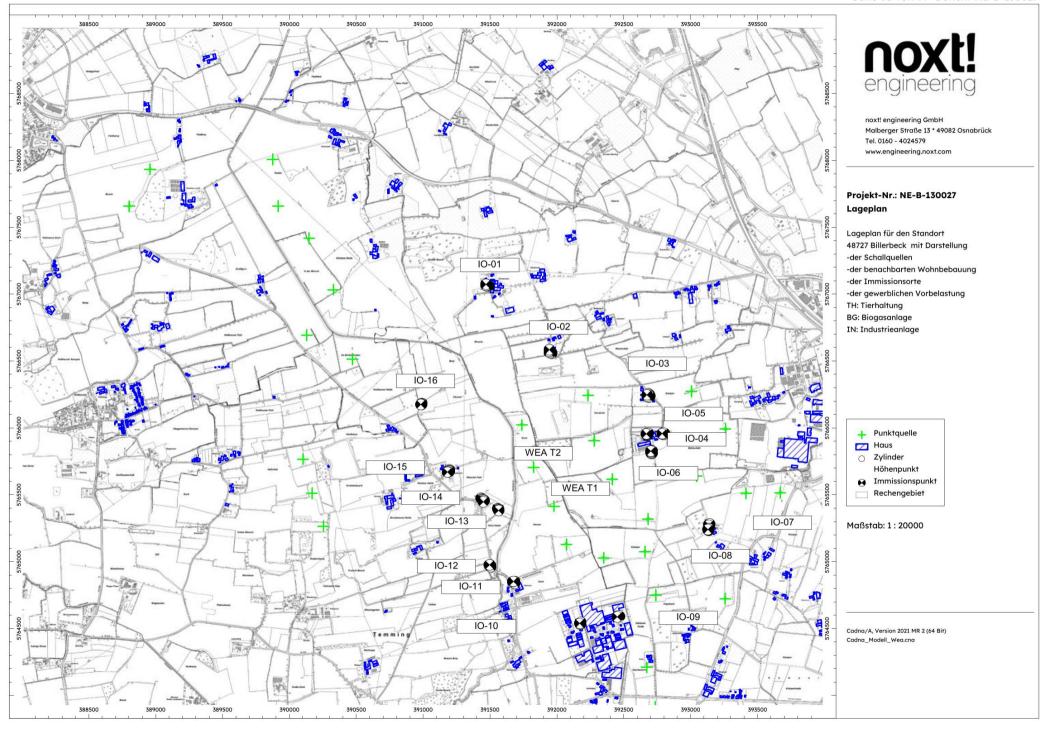
[KB18] Kamp, Irene van ; Berg, Frits van d.: Health Effects Related to Wind

Turbine Sound, Including Low-Frequency Sound and Infrasound. In: Acoustics Australia 46 (2018), April, Nr. 1, 31–57. http://dx.doi.org/10. 1007/s40857-017-0115-6. – DOI 10.1007/s40857-017-0115-6. – ISSN

1839-2571

- [KFH15] Kuehler, Robert; Fedtke, Thomas; Hensel, Johannes: Infrasonic and low-frequency insert earphone hearing threshold. In: The Journal of the Acoustical Society of America 137 (2015), Nr. 4, S. EL347–EL353. http://dx.doi.org/10.1121/1.4916795. DOI 10.1121/1.4916795. _eprint: https://doi.org/10.1121/1.4916795
- [LAI] Hinweise zum Schallimmissionsschutz bei Windkraftanlagen (WKA) Überarbeiteter Entwurf vom 17.03.2016 mit Änderungen PhysE vom 23.06.2016 Stand 30.06.2016
- [Mak11] Makarewicz, Rufin: Is a wind turbine a point source? (L). In: The Journal of the Acoustical Society of America 129 (2011), Nr. 2, S. 579–581. http://dx.doi.org/10.1121/1.3514426. DOI 10.1121/1.3514426
- [MHMN07] Malsch, Annette K.; Hornberg, Claudia; Maschke, Christian; Niemann, Hildegard: Infraschall und tieffrequenter Schall ein Thema für den umweltbezogenen Gesundheitsschutz in Deutschland? In: Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 50 (2007), Dezember, Nr. 12, 1582–1589. http://dx.doi.org/10.1007/s00103-007-0407-3. DOI 10.1007/s00103-007-0407-3. ISSN 1437-1588
- [MP04] Møller, H.; Pedersen, C. S.: Hearing at low and infrasonic frequencies. In: Noise & health 6 (2004), Juni, Nr. 23, S. 37–57. – ISSN 1463–1741. – Place: India
- [MTK+20] Maijala, Panu; Turunen, Anu; Kurki, Ilmari; Vainio, Lari; Pakarinen, Satu; Kaukinen, Crista; Lukander, Kristian; Tiittanen, Pekka; Yli-Tuomi, Tarja; Taimisto, Pekka; Lanki, Timo; Tiippana, Kaisa; Virkkala, Jussi; Stickler, Emma; Sainio, Markku: Publications of the Government's analysis, assessment and research activities. Bd. 34: Infrasound Does Not Explain Symptoms Related to Wind Turbines. 2020
- [RBB⁺16] Ratzel, U.; Bayer, O.; Brachat, P.; Hoffmann, M.; Jänke, K.; Kiesel, K.-J.; Mehnert, C.; Scheck, C.: Tieffrequente Geräusche inkl. Infraschall von Windkraftanlagen und anderen Quellen. 2. Auflage. Karlsruhe: Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW), 2016
- [TAL] Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm

- TA Lärm), Geändert durch Verwaltungsvorschrift vom 01.06.2017 (BAnz AT 08.06.2017 B5)
- [TNWRGMD21] Technik Nordrhein-Westfalen Ref 324 Geoinformationszentrum Mauerstr. 51 40476 Düsseldorf, Landesbetrieb I.: OpenGeodata.NRW. https://www.opengeodata.nrw.de/produkte/geobasis/. Version: 2021
- [WBK⁺17] Weichenberger, Markus; Bauer, Martin; Kühler, Robert; Hensel, Johannes; Forlim, Caroline G.; Ihlenfeld, Albrecht; Ittermann, Bernd; Gallinat, Jürgen; Koch, Christian; Kühn, Simone: Altered cortical and subcortical connectivity due to infrasound administered near the hearing threshold Evidence from fMRI. In: PLOS ONE 12 (2017), April, Nr. 4, 1–19. http://dx.doi.org/10.1371/journal.pone.0174420. DOI 10.1371/journal.pone.0174420. Publisher: Public Library of Science
- [WEA] Erlass für die Planung und Genehmigung von Windenergieanlagen und Hinweise für die Zielsetzung und Anwendung (Windenergie-Erlass), Gem. RdErl. d. Ministeriums für Wirtschaft, Innovation, Digitalisierung und Energie (Az. VI.A-3 77-33 Windenergieerlass) und des Ministeriums für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz (Az. VII.2.2 2017/01 Windenergieerlass) und des Ministeriums für Heimat, Kommunales, Bau und Gleichstellung des Landes Nordrhein-Westfalen (Az. 611 901.3/202), Glied-Nr. 2310, 08.05.2018, Ministerialblatt für das Land Nordrhein-Westfalen Nr. 12, ausgegeben zu Düsseldorf am 22. Mai 2018
- [WKB+15] Weichenberger, Markus; Kühler, Robert; Bauer, Martin; Hensel, Johannes; Brühl, Rüdiger; Ihlenfeld, Albrecht; Ittermann, Bernd; Gallinat, Jürgen; Koch, Christian; Sander, Tilmann; Kühn, Simone: Brief bursts of infrasound may improve cognitive function An fMRI study. In: Hearing Research 328 (2015), 87–93. http://dx.doi.org/https://doi.org/10.1016/j.heares.2015.08.001. DOI https://doi.org/10.1016/j.heares.2015.08.001. DOI https://doi.org/10.1016/j.heares.2015.08.001. ISSN 0378–5955
- [YE74] Yeowart, Norman S.; Evans, Margaret J.: Thresholds of audibility for very low-frequency pure tones. In: The Journal of the Acoustical Society of America 55 (1974), Nr. 4, S. 814–818. http://dx.doi.org/10.1121/1.1914605. DOI 10.1121/1.1914605
- [YST14] Yokoyama, Sakae ; Sakamoto, Shinichi ; Tachibana, Hideki: Perception of low frequency components in wind turbine noise. In: Noise Control


Engineering Journal 62 (2014), September. http://dx.doi.org/10.3397/1/376228. - **DOI 10.3397/1/376228**

[ZF99] Zwicker, Eberhard ; Fastl, Hugo: Psychoacoustics. second updated. Berlin, Heidelberg : Springer, 1999 (Springer Series in Information Sciences)

A Lageplan des untersuchten Gebietes

Der nachfolgende Lageplan stellt die Lage der untersuchten Windenergieanlagen sowie die betrachteten Immissionsorte dar. Diese Karte ist enthalten, um auch im gedruckten Zustand eine Übersicht zu ermöglichen. Die interaktive Karte beinhalten diese Informationen ebenfalls und wird in der digitalen Form empfohlen.

B Detaillierte Berechnungsergebnisse

In den folgenden Dateieinbindungen werden die Rasterlärmkarten der Vor-, Zusatz- und Gesamtbelastung, die weiterführenden Berechnungsergebnisse und die Protokolldateien zusammengefasst. Durch eine Auswahl der Dateisymbole lassen sich die Dokumente öffnen und einzeln analysieren. In dem Dokument mit dem Textsymbol werden die detaillierten Berechnungsergebnisse und Konfigurationen dargestellt. In dem Dokument des Bildsymbols werden die Rasterlärmkarten für die Konfiguration aufgeführt.

C Eigenschaften der Immissionsorte

In der folgenden Tabelle C.1 sind die einzelnen Immissionspunkte an den ausgewählten Immissionsorten angegeben. Für jeden Immissionsort (z.B. IO-01) werden verschiedene Punkte an einer Fassade (F) in einem Geschoss (G) betrachtet. Das r in der Spalte Höhe steht für die relative Höhe über dem Gelände.

Tabelle C.1: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	Nutzungsart und	nd					Koordinaten	
Ð	ш	ტ		IRW		Lärmart	Höhe				
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		۳	<u>E</u>	Ξ
5	7	(Westenfe	Westenfeld 14, 48341 Altenberge	1 Altenber	ge					
10-01	SI	ם	M	09	45	Industrie	2,5	_	391.491,55	5.767.061,67	71,4
5	9	,	Westenfe	Westenfeld 14, 48341 Altenberge	1 Altenber	ge					
10-01	75	1.06	Ϋ́	09	45	Industrie	2,0	_	391.486,99	5.767.061,44	73,9
2	17	(Westenfe	Westenfeld 14, 48341 Altenberge	1 Altenber	ge	10 1				
10-01	Ç	מ	M	09	45	Industrie	2,5	_	391.482,43	5.767.061,22	71,3
5	7	,	Westenfe	Westenfeld 14, 48341 Altenberge	1 Altenber	ge					
5	4		M	09	45	Industrie	2,0	_	391.477,87	391.477,87 5.767.060,99	73,8
5	10	2	Westenfe	Westenfeld 14, 48341 Altenberge	1 Altenber	ge					
10-01	CS	ם ט	Ψ	09	45	Industrie	2,5	_	391.473,31	391.473,31 5.767.060,76	71,3
5	7	,	Westenfe	Westenfeld 14, 48341 Altenberge	1 Altenber	ge					
10-01	×	1.0g	Ϋ́	09	45	Industrie	2,0	_	391.469,83	5.767.066,06	73,8
5	7	Ç	Westenfe	Westenfeld 14, 48341 Altenberge	1 Altenber	ge					
10-01	, w	ט	Ψ	09	45	Industrie	2,5		391.469,83	5.767.066,06	71,3
5	7	,	Westenfe	Westenfeld 14, 48341 Altenberge	1 Altenber	ge					
10-01	8	1.0	Ψ	09	45	Industrie	2,0	_	391.469,48	5.767.073,14	73,8
5	2	(Westenfe	Westenfeld 14, 48341 Altenberge	1 Altenber	ge					
10-01	c N	FG	MI	09	45	Industrie	2,5	_	391.469,48	5.767.073,14	71,3
20	7	,	Westenfe	Westenfeld 12, 48341 Altenberge	. Altenberg	ge					
70-01	21	1.0	MI	09	45	Industrie	2,0	_	391.962,47	r 391.962,47 5.766.559,33	73,8

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	Nutzungsart und	pu					Koordinaten	
ü	щ	ტ		IRW		Lärmart	Höhe	4.			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		Ξ	[<u>w</u>]	Ξ
6	7	(Westenfe	Westenfeld 12, 48341 Altenberge	1 Altenberg	ge					
10-07	SI	ภ	M	09	45	Industrie	2,5	_	391.962,47	5.766.559,33	71,2
5	Ŋ	,	Westenfe	Westenfeld 12, 48341 Altenberge	1 Altenberg	ЭG					
70-07	S	1.06	M	09	45	Industrie	2,0	_	391.949,57	5.766.559,44	73,7
5	Ŋ	Ĺ	Westenfe	Westenfeld 12, 48341 Altenberge	1 Altenberg	ge					
10-07	S	ם	M	09	45	Industrie	2,5		391.949,57	5.766.559,44	71,2
5	5	,	Westenfe	Westenfeld 12, 48341 Altenberge	1 Altenberg	Эe					
70-07	٦ «	1.0	Σ	09	45	Industrie	2,0	_	391.941,61	391.941,61 5.766.565,10	73,7
5	7		Westenfe	Westenfeld 12, 48341 Altenberge	1 Altenberg	ge					
10-07	٦ «	ם ט	М	09	45	Industrie	2,5	L	391.941,61	391.941,61 5.766.565,10	71,2
5	7	,	Westenfe	Westenfeld 12, 48341 Altenberge	1 Altenberg	Эe		8			
10-07	c M	1.06	Ψ	09	45	Industrie	2,0	_	391.941,41	5.766.574,65	73,7
5	Ų	,	Westenfe	Westenfeld 12, 48341 Altenberge	1 Altenberg	Эe					
10-07	o M	1.0	M	09	45	Industrie	2,0		391.942,88	5.766.584,28	73,7
5	Ų	Ç	Westenfe	Westenfeld 12, 48341 Altenberge	1 Altenberg	ge					
10-07	o X	ט	Σ	09	45	Industrie	2,5	_	391.942,88	5.766.584,28	71,2
10.07	3		Kümper 2	204, 48341 Altenberge	Altenberge						
10-03	101	ם	MI	09	45	Industrie	2,2	L	392.683,47	5.766.256,47	73,2
70.01	705	100	Kümper 2	204, 48341 Altenberge	Altenberge		8 5			3 8	
10-03	SOL	1.0g	MI	09	45	Industrie	2,0	_	392.688,32	5.766.251,20	75,7

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	zungsart und	pu					Koordinaten	
ü	L	ტ		IRW		Lärmart	Höhe	43			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		<u>E</u>	<u>[</u> w]	Ξ
10.01	7	J-1	Kümper 2	Kümper 204, 48341 Altenberge	Altenberge	DOLUGO.					
10-03	202	ם	M	09	45	Industrie	2,5	_	392.688,32	5.766.251,20	73,2
		Ç	Kümper 204,	04, 48341	48341 Altenberge		3 3				
10-03	000	D D	Ψ	09	45	Industrie	2,5	_	392.691,96	5.766.245,05	73,2
10.01	700	,	Kümper 204,	04, 48341	48341 Altenberge						
5-01	901	J. O.	M	09	45	Industrie	2,0	_	392.693,81	5.766.241,67	75,7
10.07	705	Ĺ	Kümper 204,	04, 48341	48341 Altenberge						
5-01	2	פֿ	Σ	09	45	Industrie	2,5	_	392.696,23	5.766.239,03	73,2
20 01	501	0	Kümper 204,	04, 48341	48341 Altenberge	-0.053					
5	108	5	MI	09	45	Industrie	2,0	_	392.693,56	5.766.232,99	75,7
10.02	501	Ü	Kümper 2	Kümper 204, 48341 Altenberge	Altenberge		9 5				
5-51	SOI	ם	Ψ	09	45	Industrie	2,5	_	392.693,56	5.766.232,99	73,2
70	7	Ĺ	Kümper 2	Kümper 204, 48341 Altenberge	Altenberge						
5-01	T MS	ם	M	09	45	Industrie	2,5		392.688,97	5.766.228,76	73,2
10.01	2///2	23	Kümper 2	Kümper 204, 48341 Altenberge	Altenberge	20012500000	2				
5	CWS	2	Μ	09	45	Industrie	2,5	_	392.679,10	5.766.233,69	73,2
10.07	Ų	Ĺ	Kümper 2	Kümper 204, 48341 Altenberge	Altenberge						
50-01	CWS	ב	MI	09	45	Industrie	2,2	L	392.674,18	5.766.239,03	73,1
10.07	27.72	J2	Kümper 2	Kümper 204, 48341 Altenberge	Altenberge			. A			
50-01	/MS	ם	MI	09	45	Industrie	2,5	_	392.672,82	5.766.247,70	73,1

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	Nutzungsart und	pur					Koordinaten	
G	ш	ŋ		IRW		Lärmart	Höhe	a			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		Ξ	<u>E</u>	Ξ
25	1	,	Kümper 2	203, 48341 Altenberge	Altenberge	SE**					
10-04	IMI	J. O.	Ψ	09	45	Industrie	2,0	_	392.672,93	5.765.958,98	75,2
2	;	Ĺ	Kümper 2	203, 48341 Altenberge	Altenberge						
10-01	IMU	ก	Σ	09	45	Industrie	2,5	_	392.672,93	5.765.958,98	72,7
200	1	,	Kümper 2	203, 48341 Altenberge	Altenberge						
10-01	c M I	1.0	M	09	45	Industrie	2,0	_	392.678,24	5.765.960,06	75,2
2	7, 10	,	Kümper 2	203, 48341 Altenberge	Altenberge						
10-01	CML	2.06	Σ	09	45	Industrie	7,8	_	392.678,24	5.765.960,06	78,0
2	777.10	Ç	Kümper 2	203, 48341 Altenberge	Altenberge						
50-01	<u> </u>	ם ב	Ψ	09	45	Industrie	2,5	L	392.678,24	5.765.960,06	72,7
20	Ų	,	Kümper 2	203, 48341 Altenberge	Altenberge						
10-01	CMI	1.0	Ψ	09	45	Industrie	2,0	_	392.683,56	5.765.961,14	75,3
2	Ų	Ĺ	Kümper 2	203, 48341 Altenberge	Altenberge	_					
10-01	CMI	ם ט	Ψ	09	45	Industrie	2,5	L	392.683,56	5.765.961,14	72,8
2		,	Kümper 2	203, 48341 Altenberge	Altenberge	1120					
10-01	SWI	1.06	Ψ	09	45	Industrie	2,0	_	392.676,48	5.765.945,16	75,2
2	7	Ĺ	Kümper 2	203, 48341 Altenberge	Altenberge						
10-04	T M S	ב	MI	09	45	Industrie	2,5	_	392.676,48	5.765.945,16	72,7
20	27.10	,	Kümper 2	203, 48341 Altenberge	Altenberge						
10-04	cws	1.0	M	09	45	Industrie	2,0		392.675,91	5.765.947,93	75,2

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	Nutzungsart und	pui					Koordinaten	
ū	ш	O		IRW		Lärmart	Höhe	(I)			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		<u>E</u>	<u>E</u>	<u>E</u>
2	Ņ	Ç	Kümper	Kümper 203, 48341 Altenberge	Altenberge						
10-01	SWS	נים	Ψ	09	45	Industrie	2,5	_	392.675,91	5.765.947,93	72,7
2	ų		Kümper ;	Kümper 203, 48341 Altenberge	Altenberge						
10-04	SWS	1.06	M	09	45	Industrie	2,0	_	392.672,19	392.672,19 5.765.950,84	75,2
200	Ų	Ç	Kümper ;	Kümper 203, 48341 Altenberge	Altenberge						
10-01	SWS	מ	Ψ	09	45	Industrie	2,5	_	392.672,19	392.672,19 5.765.950,84	72,7
200	L, ii		Kümper	Kümper 203, 48341 Altenberge	Altenberge						
10-01	/ws	1.0	Ψ	09	45	Industrie	2,0	_	392.669,65	392.669,65 5.765.952,77	75,2
20.01	1, 10	,	Kümper	Kümper 203, 48341 Altenberge	Altenberge						
100	/ws	ט	Й	09	45	Industrie	2,5	L	392.669,65	392.669,65 5.765.952,77	72,7
20	Q	000	Kümper	Kümper 203, 48341 Altenberge	Altenberge						
5	0 0 8	20.0	Ψ	09	45	Industrie	7,8	_	392.669,32	5.765.954,25	78,0
20	ç	,	Kümper	Kümper 203, 48341 Altenberge	Altenberge						
500	5W4	50.	Ψ	09	45	Industrie	2,0	_	392.668,99	5.765.955,72	75,2
20	ç		Kümper ;	Kümper 203, 48341 Altenberge	Altenberge						
10-01	SW4	ט	Ψ	09	45	Industrie	2,5	_	392.668,99	5.765.955,72	72,7
20		Ĺ	Kümper	Kümper 203b, 48341 Altenberge	Altenberg	ē					
-01	101	ם	М	09	45	Industrie	2,5	L	392.803,22	5.765.961,12	73,2
30.01	200	Ü	Kümper 3	Kümper 203b, 48341 Altenberge	Altenberg	je.	9 55				
60-01	2	ב	M	09	45	Industrie	2,5	_	392.805,05	5.765.954,41	73,2

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			Nut	Nutzungsart und	pui					Koordinaten	
a	ш	ტ		IRW		Lärmart	Höhe	ø			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		Ξ	<u>E</u>	Ξ
	1		Kümper 2	203b, 48341 Altenberge	Altenberg	<u>e</u>					
10-03	IMI	ט	M	09	45	Industrie	2,5	L	392.790,82	5.765.962,13	73,2
	1	Ç	Kümper 2	203b, 48341 Altenberge	Altenberg	<u>e</u>					
10-03	CWL	ני	M	09	45	Industrie	2,5	_	392.798,51	5.765.964,24	73,2
70	7	C	Kümper 2	203b, 48341 Altenberge	Altenberg	<u>e</u>					
10-03	15	ט	Ψ	09	45	Industrie	2,5	_	392.801,42	5.765.949,83	73,2
70.01	70	Ĺ	Kümper 2	203b, 48341 Altenberge	Altenberg	<u>ə</u>					
6 -01	Ç,	ט	IΨ	09	45	Industrie	2,5	_	392.795,15	5.765.950,68	73,2
10.01		Ç	Kümper 2	203b, 48341 Altenberge	Altenberg	<u>e</u>					
10-03	T MS	ט	М	09	45	Industrie	2,5	_	392.787,45	5.765.954,25	73,1
20		Ç	Kümper 2	203b, 48341 Altenberge	Altenberg	<u>e</u>					
10-03	SWS	מ	M	09	45	Industrie	2,5	_	392.786,54	5.765.957,75	73,1
70.01	7	Ĺ	Kümper 2	203a, 48341 Altenberge	Altenberg	<u>e</u>					
0-0-	=	ט	Ψ	09	45	Industrie	2,5	_	392.704,41	5.765.829,52	72,6
70.01	ç	,	Kümper 2	203a, 48341 Altenberge	Altenberg	e.					
8 0 1	71	1.0	Ψ	09	45	Industrie	2,0	L	392.705,95	5.765.829,66	75,1
70 01	7.5	Ç	Kümper 2	203a, 48341 Altenberge	Altenberg	ā					
00-01	2	ם	MI	09	45	Industrie	2,5	L	392.707,49	5.765.829,80	72,6
70.01	- 1	,	Kümper 2	203a, 48341 Altenberge	Altenberg	<u>e</u>					
90-0I	4	1.06	MI	09	45	Industrie	2,0	_	392.709,03	5.765.829,94	75,1

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	Nutzungsart und	pui					Koordinaten	
a	щ	O		IRW		Lärmart	Höhe	a			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		Ξ	<u>[</u> w]	Ξ
70.0		(Kümper 2	203a, 48341 Altenberge	Altenberg	<u>ə</u>					
10-00	2	ก	Σ	09	45	Industrie	2,5	_	392.711,94	5.765.828,93	72,6
70.01	7	Ĺ	Kümper 2	203a, 48341 Altenberge	Altenberg	<u>e</u>					
0-01	SI	ם	Ψ	09	45	Industrie	2,5	_	392.713,45	5.765.812,43	72,6
70.01	ç	,	Kümper 2	203a, 48341 Altenberge	Altenberg	<u>e</u>					
0-01	75	1.06	Ψ	09	45	Industrie	2,0		392.710,64	5.765.810,35	75,1
70 01	70	Ĺ	Kümper 2	203a, 48341 Altenberge	Altenberg	<u>e</u>					
8 0 1	Ç,	ם ט	Σ	09	45	Industrie	2,5	L	392.709,09	5.765.810,21	72,6
70.01	7	,	Kümper 2	203a, 48341 Altenberge	Altenberg	<u>e</u>					
0-01	4°	1.06	Σ	09	45	Industrie	2,0	L	392.707,54	5.765.810,07	75,1
70.01	ų	Ĺ	Kümper 2	203a, 48341 Altenberge	Altenberg	<u>e</u>					
0-01	S	ก	Σ	09	45	Industrie	2,5	_	392.705,99	5.765.809,92	72,5
70.01	7	Ĺ	Kümper 2	203a, 48341 Altenberge	Altenberg	<u>e</u>					
8	W	ם ט	Ψ	09	45	Industrie	2,5		392.703,39	5.765.813,54	72,5
70.01	7	(Kümper 2	203a, 48341 Altenberge	Altenberg	<u>e</u>					
6 0 1	o X	ט	Ψ	09	45	Industrie	2,5	_	392.703,01	5.765.817,70	72,6
70 01	Ų	(Kümper 2	203a, 48341 Altenberge	Altenberg	ē					
0-01	o M	ם	М	09	45	Industrie	2,5	L	392.702,63	5.765.821,85	72,6
70	7,	U	Kümper 2	203a, 48341 Altenberge	Altenberg	<u>ie</u>					
0-01	À	อ	M	09	45	Industrie	2,5	_	392.702,25	5.765.826,01	72,6

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	Nutzungsart und	nd					Koordinaten	
ü	ш	O		IRW		Lärmart	Höhe	d)			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
			8	[dB(A)]	[dB(A)]		Ξ		<u>E</u>	<u>E</u>	<u>E</u>
10.01	i	,	Kümper 1	155, 48341 Altenberge	Menberge						
0-0-1	IWI	1.06	Ψ	09	45	Industrie	2,0	_	393.136,56	5.765.277,31	74,8
100	7	(Kümper :	155, 48341 Altenberge	Menberge						
10-01	IMI	ני	Ψ	09	45	Industrie	2,5	_	393.136,56	5.765.277,31	72,3
100	,	,	Kümper 3	155, 48341 Altenberge	Menberge						
10-01	CWL	1.06	Ψ	09	45	Industrie	2,0	_	393.142,60	5.765.280,99	74,8
100	1	Ĺ	Kümper 1	155, 48341 Altenberge	Altenberge						
10-01	CWL	ט	Ψ	09	45	Industrie	2,5	L	393.142,60	5.765.280,99	72,3
10 01	7		Kümper 1	155, 48341 Altenberge	Altenberge	59.50					
10-01	SWI	ט	Ψ	09	45	Industrie	2,5	_	393.140,54	5.765.266,72	72,3
10 01		Ç	Kümper	155, 48341 Altenberge	Altenberge						
10-01	SWS	ם	Ψ	09	45	Industrie	2,5	_	393.136,26	5.765.273,17	72,3
9	1	,	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Itenberge					
0-0-	T M I	5	Ψ	09	45	Industrie	2,0	L	393.130,56	5.765.243,18	74,7
90	Š	,	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Itenberge	1				
000	IMI	2.03	Ψ	09	45	Industrie	7,8	_	393.130,56	5.765.243,18	77,5
90	ī	Ç	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Itenberge					
000	IWI	ט	М	09	45	Industrie	2,2	L	393.130,55	5.765.243,17	72,2
90	7, 15	,	Kümper 3	155 (Neubau), 48341 Altenberge	u), 48341 A	Itenberge	8 5			2 5	
00-01	CMI	1.03	М	09	45	Industrie	2,0	_	393.133,31	5.765.245,00	74,7

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	Nutzungsart und	pui					Koordinaten	
ü	ш	v		IRW		Lärmart	Höhe	41			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		<u>E</u>	<u>[</u>	Ξ
6	,	0	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Altenberge					
10-08	CWL	2.03	Ψ	09	45	Industrie	2,8	_	393.133,31	5.765.245,00	77,5
9	,	Ç	Kümper :	155 (Neubau), 48341 Altenberge	u), 48341 A	Utenberge					
20-03	CWL	ני	Ψ	09	45	Industrie	2,5	_	393.133,31	5.765.245,00	72,2
9	ų į	,	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Iltenberge					
5	CMI		Ψ	09	45	Industrie	2,0	_	393.136,78	5.765.247,29	74,7
9	į	0	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Itenberge					
0-01	CML	2.03	Σ	09	45	Industrie	2,8	_	393.136,78	5.765.247,29	77,5
9	ų.	Ç	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	\tenberge					
9	CMI	ט	Ψ	09	45	Industrie	2,5	L	393.136,78	5.765.247,29	72,2
9		,	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Utenberge					
5-01	SWI	1.06	Ϋ́	09	45	Industrie	2,0	_	393.134,45	5.765.233,48	74,7
9	7	Ĺ	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Itenberge					
000	T M S	ם ט	Ψ	09	45	Industrie	2,5	_	393.134,45	5.765.233,48	72,2
9	27.10	,	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Utenberge					
6	CWS	1.0	Ψ	99	45	Industrie	2,0	_	393.132,64	5.765.236,11	74,7
90	77.10	,	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Itenberge					
°	cws	2.03	Σ	09	45	Industrie	2,8	L	393.132,64	5.765.236,11	77,5
9	77.10	Ĺ	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Utenberge					
0-01	CMS	ם	MI	09	45	Industrie	2,5	_	r 393.132,64	5.765.236,11	72,2
			68				8				

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

4			N	Nutzungsart und	pur					Koordinaten	
a	ш	ტ		IRW		Lärmart	Höhe	a			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		Ξ	<u>[</u>	<u>E</u>
6	Ļ	,	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Altenberge					
10-08	SWS	P.O.	Σ	09	45	Industrie	2,0	_	393.130,84	5.765.238,74	74,7
9	ų	000	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Altenberge					
10-08	SWS	2.06	Σ	09	45	Industrie	7,8	_	393.130,84	5.765.238,74	77,5
6	Ļ	Ç	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Altenberge					
8 0	CMS	ט	Σ	09	45	Industrie	2,5	_	393.130,84	5.765.238,74	72,2
2	77.10	,	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	Altenberge					
8 0	/ws	50.	Σ	09	45	Industrie	2,0	L	393.129,65	5.765.240,47	74,7
9	77.10	Ç	Kümper 1	155 (Neubau), 48341 Altenberge	u), 48341 A	\tenberge					
0-0-1	/ws	ט	Σ	09	45	Industrie	2,5	L	393.129,64	5.765.240,47	72,2
90	1		Temming	Temming 80, 48727 Billerbeck	3illerbeck						
10-03	100	ם	Σ	09	45	Industrie	2,5	_	392.469,03	5.764.591,92	72,5
9	1	Ĺ	Temming	Temming 80, 48727 Billerbeck	3illerbeck						
10-01	IMI	ט	Σ	09	45	Industrie	2,5		392.452,41	5.764.592,27	72,5
9	777.55	Ç	Temming	Temming 80, 48727 Billerbeck	3illerbeck						
10-01	C M I	ט	Σ	09	45	Industrie	2,5	_	392.456,75	5.764.594,89	72,5
5	Ų.	Ç	Temming	Temming 80, 48727 Billerbeck	3illerbeck						
10-01	CMI	ט	MI	09	45	Industrie	2,5	L	392.461,82	5.764.596,44	72,5
5	17.0	Ü	Temming	Temming 80, 48727 Billerbeck	3illerbeck						
10-03	SWI	ก	MI	09	45	Industrie	2,5		392.450,40	5.764.587,49	72,5
77.6			8	8			8		G		

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	zungsart und	pur					Koordinaten	
ū	ш	O		IRW		Lärmart	Höhe	a)			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		<u>"</u>	<u>E</u>	Ξ
5	i	5	Temming	86, 48727 Billerbeck	3illerbeck						
10-10	IWI	מ	Ψ	09	45	Industrie	2,5	_	392.178,29	5.764.548,28	72,6
2, 0,	7	Ç	Temming	86, 48727 Billerbeck	3illerbeck						
10-10	SWI	ם	Ψ	09	45	Industrie	2,5	_	392.175,68	5.764.530,61	72,7
5	77.10	C	Temming	86, 48727 Billerbeck	3illerbeck						
5	cws	ט	Ψ	09	45	Industrie	2,5	_	392.174,24	5.764.535,46	72,7
9	Ų	Ĺ	Temming	86, 48727 Billerbeck	3illerbeck						
10-10	cws	ט	Σ	09	45	Industrie	2,5	L	392.170,30	5.764.538,62	72,7
5	-	,	Temming	49, 48727 Billerbeck	3illerbeck						
	101	5.5	Ψ	09	45	Industrie	2,0	L	391.682,50	5.764.851,45	75,5
;	1	000	Temming	49, 48727 Billerbeck	Billerbeck						
5	101	2.03	Ϋ́	09	45	Industrie	7,8	_	391.682,50	5.764.851,45	78,3
;	1	Ĺ	Temming	49, 48727 Billerbeck	3illerbeck						
5	101	ט	Ψ	09	45	Industrie	2,5	_	391.682,50	5.764.851,45	73,0
;	705	,	Temming	49, 48727 Billerbeck	Billerbeck						
11-01	202	1.0	Σ	09	45	Industrie	2,0	_	391.684,00	5.764.846,27	75,5
5	705	Ĺ	Temming	49, 48727 Billerbeck	3illerbeck						
101	2	ם ט	Ψ	09	45	Industrie	2,5	L	391.684,00	5.764.846,27	73,0
5	, L	,	Temming	49, 48727 Billerbeck	3illerbeck						
10-11	201		M	09	45	Industrie	2,0	_	391.683,25	5.764.840,44	75,5
							8				

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			Nut	zungsart und	pur					Koordinaten	
ü	ш	O		IRW		Lärmart	Höhe	۸.			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
		-		[dB(A)]	[dB(A)]		Ξ		<u>E</u>	<u>E</u>	Ξ
;		(Temming	49, 48727 Billerbeck	3illerbeck						
1-51	601	ם	Ψ	09	45	Industrie	2,5	_	391.683,25	5.764.840,44	73,0
;	77.	,	Temming	49, 48727 Billerbeck	3illerbeck						
10-11	/OU	1.0g	Ψ	09	45	Industrie	2,0	_	391.684,09	5.764.837,51	75,5
5	705	Ĺ	Temming	49, 48727 Billerbeck	3illerbeck						
1-51	20	ם ט	Σ	09	45	Industrie	2,5	_	391.684,10	5.764.837,50	73,0
5	1	Ç	Temming	49, 48727 Billerbeck	3illerbeck						
1-51	T M L	ם ט	Ψ	09	45	Industrie	2,5	_	391.667,41	5.764.850,43	73,0
;	ç	,	Temming	49, 48727 Billerbeck	3illerbeck						
10-11	7 M I	1.0	Ψ	09	45	Industrie	2,0	L	391.671,16	5.764.851,51	75,5
;	77	Ç	Temming	49, 48727 Billerbeck	3illerbeck		S 5				
101	CM E	ם ט	Σ	09	45	Industrie	2,5	_	391.674,91	5.764.852,59	73,0
5	1	,	Temming	50, 48727 Billerbeck	3illerbeck						
10-17	101	1.0	Σ	09	45	Industrie	2,0		391.499,36	5.764.976,34	75,1
5	1	Ĺ	Temming	50, 48727 Billerbeck	3illerbeck						
10-17	101	ם ט	Σ	09	45	Industrie	2,5	_	391.499,36	5.764.976,34	72,6
5	200	,	Temming	50, 48727 Billerbeck	3illerbeck						
10-12	701	1.03	MI	09	45	Industrie	2,0	_	391.503,57	5.764.971,99	75,1
10 13	200	2	Temming	50, 48727 Billerbeck	3illerbeck						
10-11	2	2	MI	09	45	Industrie	2,5	_	391.503,83	5.764.970,11	72,6
				8			8	ř			

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	tzungsart und	pur					Koordinaten	
ū	ш	O		IRW		Lärmart	Höhe	d)			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		Ξ	<u>[</u>	Ξ
5	1	,	Temming	50, 48727 Billerbeck	3illerbeck						
10-17	000	1.06	Ψ	09	45	Industrie	2,0	_	391.504,37	5.764.966,36	75,1
5	L S	Ç	Temming	50, 48727 Billerbeck	3illerbeck						
10-17	COL	ם	Ψ	09	45	Industrie	2,5	_	391.504,37	5.764.966,36	72,6
5	700	,	Temming	50, 48727 Billerbeck	3illerbeck						
10-17	00	50.	Ψ	09	45	Industrie	2,0	_	391.504,64	5.764.964,48	75,1
5	704	Ĺ	Temming	50, 48727 Billerbeck	3illerbeck						
71-01	900	ט	Σ	09	45	Industrie	2,5	_	391.504,64	5.764.964,48	72,6
5	700	,	Temming	50, 48727 Billerbeck	3illerbeck						
10-17	2	5.5	Ψ	09	45	Industrie	2,0	L	391.504,91	5.764.962,61	75,1
;	100	Ç	Temming	50, 48727 Billerbeck	3illerbeck						
10-17	0	ט	Ϋ́	09	45	Industrie	2,5	_	391.504,91	5.764.962,61	72,6
5	1	,	Temming	50, 48727 Billerbeck	3illerbeck						
10-17	IMI	50.	Ψ	09	45	Industrie	2,0	_	391.493,44	5.764.975,50	75,1
;	i		Temming	50, 48727 Billerbeck	3illerbeck						
71-01	IMI	ט	Σ	09	45	Industrie	2,5	_	391.493,48	5.764.975,50	72,6
25	1	,	Temming	50, 48727 Billerbeck	3illerbeck						
71-01	S	5	Ψ	09	45	Industrie	2,0	L	391.496,57	5.764.975,95	75,1
5	27774	Ü	Temming	50, 48727 Billerbeck	3illerbeck						
71-01	CMI	נ	MI	09	45	Industrie	2,5	_	391.496,57	5.764.975,95	72,6
			8				8				

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	Nutzungsart und	pui					Koordinaten	
ū	ш	ტ		IRW		Lärmart	Höhe	029			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		<u>"</u>	<u>E</u>	٤
17	1	,	Temming	51, 48727 Billerbeck	3illerbeck						
10-13	20	J. C	M	09	45	Industrie	2,0	_	391.556,21	391.556,21 5.765.398,37	75,0
1, 0,		(Temming	51, 48727 Billerbeck	3illerbeck			8 8			
10-13	000	D D	M	09	45	Industrie	2,5	_	391.556,21	5.765.398,37	72,5
77	5	,	Temming	51, 48727 Billerbeck	3illerbeck		-0.				
10-13	102	J. C	M	09	45	Industrie	2,0		391.561,92	5.765.394,31	75,0
77	2	Ĺ	Temming	51, 48727 Billerbeck	3illerbeck						
10-13	701	ם ט	Μ	09	45	Industrie	2,5	_	391.561,92	391.561,92 5.765.394,31	72,5
17		Ĺ	Temming	51, 48727 Billerbeck	3illerbeck						
10-13	108	ב	М	09	45	Industrie	2,5	_	391.565,87	391.565,87 5.765.391,51	72,5
10.17	700	,	Temming	51, 48727 Billerbeck	3illerbeck		3 9	. 8			
10-13	SOS	1.0	Μ	09	45	Industrie	2,0	_	391.566,17	391.566,17 5.765.386,96	75,0
17. 17	200	Ĺ	Temming	51, 48727 Billerbeck	3illerbeck		10 1				
10-13	SOS	ם ט	Μ	09	45	Industrie	2,5	_	391.566,17	391.566,17 5.765.386,96	72,5
77 77	300	,	Temming	51, 48727 Billerbeck	3illerbeck						
51-51	cos	5	Σ	09	45	Industrie	2,0	_	391.563,44	5.765.383,00	75,0
10 12	300	Ĺ	Temming	51, 48727 Billerbeck	3illerbeck		:				
10-13	cos	ב	MI	09	45	Industrie	2,5	_	391.563,44	5.765.383,00	72,5
77	100	100	Temming	52, 48727 Billerbeck	3illerbeck		S 55	9 8			
1-01	101	5	MI	09	45	Industrie	2,0	_	391.432,94	5.765.473,79	74,7

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	Nutzungsart und	pur					Koordinaten	
ü	ш	v		IRW		Lärmart	Höhe	e			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		Ξ	<u>E</u>	Ξ
;	1		Temming	Temming 52, 48727 Billerbeck	3illerbeck						
10-14	101	מ	M	09	45	Industrie	2,5	_	391.432,94	5.765.473,79	72,2
:			Temming	Temming 52, 48727 Billerbeck	3illerbeck						
10-14	200	1.0 5	Ψ	09	45	Industrie	2,0	_	391.438,96	5.765.469,13	74,7
;			Temming	Temming 52, 48727 Billerbeck	3illerbeck						
1-1-1-1	20	ם ט	M	09	45	Industrie	2,5	_	391.438,96	5.765.469,13	72,2
2	2	,	100	Temming 52, 48727 Billerbeck	3illerbeck						
41-01	400	2.06	Ψ	09	45	Industrie	7,8	_	391.441,97	5.765.466,79	77,5
5	2	,	Temming	Temming 52, 48727 Billerbeck	3illerbeck						
101	2	50.1	M	09	45	Industrie	2,0	_	391.444,98	5.765.464,46	74,8
7	1	(Temming	Temming 52, 48727 Billerbeck	3illerbeck						
1-01	000	ט	M	09	45	Industrie	2,5	_	391.444,98	5.765.464,46	72,3
5	700	,	Temming	Temming 52, 48727 Billerbeck	3illerbeck						
1-01	0	50.1	M	09	45	Industrie	5,0	_	391.453,08	5.765.462,25	74,8
7	705	,	Temming	Temming 52, 48727 Billerbeck	3illerbeck						
10-14	01	2.06	M	09	45	Industrie	7,8	_	391.453,08	5.765.462,25	77,6
2. 61	705	(Temming	Temming 52, 48727 Billerbeck	3illerbeck						
10-14	2	ם ט	Ψ	09	45	Industrie	2,2	_	391.453,08	5.765.462,25	72,3
7	000	,	Temming	Temming 52, 48727 Billerbeck	3illerbeck						
10-14	Soci	1.0	M	09	45	Industrie	2,0	_	391.456,13	5.765.456,09	74,8

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

			N	tzungsart und	pur					Koordinaten	
ū	Ŀ	O		IRW		Lärmart	Höhe	ø			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		Ξ		<u>m</u>	<u>[</u> w]	Ξ
;	-	,	Temming	52, 48727	Billerbeck						
10-14	201	1.06	М	09	45	Industrie	2,0	_	391.453,94	5.765.453,50	74,8
:		,	Temming	52,	48727 Billerbeck						
10-14	SOS	1.06	M	09	45	Industrie	2,0	_	391.449,54	5.765.448,30	74,8
7	1	C	Temming	56, 48727 Billerbeck	3illerbeck						
10-13	101	ט	М	09	45	Industrie	2,5	_	391.195,66	5.765.687,85	71,5
15	700	,	Temming	56, 48727 Billerbeck	3illerbeck						
10-13	201	1.06	Μ	09	45	Industrie	2,0	_	391.197,24	5.765.682,21	74,0
17	704	Ç	Temming	56, 48727 Billerbeck	3illerbeck						
10-13	2	ם ב	М	09	45	Industrie	2,5	_	391.197,21	5.765.682,19	71,5
17	9	,	Temming	56, 48727 Billerbeck	3illerbeck						
10-13	00	1.0	Μ	09	45	Industrie	5,0	_	391.196,38	5.765.678,52	74,0
17	9	Ĺ	Temming	56, 48727 Billerbeck	3illerbeck						
51-51	2	ם ט	Μ	09	45	Industrie	2,5	<u>.</u>	391.196,38	5.765.678,52	71,5
17	100	,	Temming	56, 48727 Billerbeck	3illerbeck						
10-13	108	 5	Μ	09	45	Industrie	2,0	_	391.193,00	5.765.677,59	74,0
15	100	Ĺ	Temming	56, 48727 Billerbeck	3illerbeck						
10-13	108	ם	MI	09	45	Industrie	2,5	L	391.193,00	5.765.677,59	71,5
10.15	203	100	Temming	56, 48727 Billerbeck	3illerbeck	, S				5 22 22 25 25 25 25 25 25 25 25 25 25 25	
10-10	000	7.0	MI	9	45	Industrie	2,0	_	391.187,78	5.765.671,83	74,0

Tabelle C.1: Fortsetzung: Auflistung sämtlicher Immissionspunkte der Untersuchungen an den Immissionsorten

8			N	tzungsart und	pui					Koordinaten	
입	ш	v		IRW		Lärmart	Höhe	.			
			Gebiet	tags	nachts				Ostwert	Nordwert	Höhe N.N.
				[dB(A)]	[dB(A)]		[ш]		Ξ	<u>[</u> w]	[ш]
4	7.00		Temming	56, 48727 Billerbeck	3illerbeck						
10-13	cos	D I	M	09	45	Industrie	2,5	_	391.187,78	5.765.671,83	71,5
		,	Temming	56, 48727 Billerbeck	3illerbeck						
10-13	cos	1.06	M	09	45	Industrie	2,0	_	391.181,46	5.765.670,13	74,0
			Temming	56, 48727 Billerbeck	3illerbeck						
10-13	202	מ	M	09	45	Industrie	2,5	_	391.181,46	5.765.670,13	71,5
7, 61	7	,	Temming	58, 48727 Billerbeck	3illerbeck			1			
oT-01	10	1.0	Μ	09	45	Industrie	2,0	_	390.991,03	5.766.184,21	72,9
7, 01	7	Ĺ	Temming	58,	48727 Billerbeck						
10-10	70	נ	М	09	45	Industrie	2,5	L	390.991,03	5.766.184,21	70,4
7, 41	ç	,	Temming	58,	48727 Billerbeck			. 8			
10-10	70	1.0	Μ	09	45	Industrie	2,0		390.991,76	5.766.180,11	72,9
7, 01	5	Ĺ	Temming	58,	48727 Billerbeck						
10-10	70	ם ט	Μ	09	45	Industrie	2,5		390.991,76	5.766.180,11	70,4
77 01	7		Temming	58,	48727 Billerbeck						
10-10	īs	ט	Μ	09	45	Industrie	2,5	_	390.988,47	5.766.176,09	70,5
7, 01	ç	,	Temming	58, 48727 Billerbeck	3illerbeck						
10-10	75	1.03	MI	09	45	Industrie	2,0	L	390.985,58	5.766.175,58	73,0
10.16	2.5	23	Temming	58, 48727 Billerbeck	3illerbeck			. 0	. 8		
77-77	3	נ	MI	09	45	Industrie	2,5	_	390.982,08	5.766.174,96	70,5

D Eigenschaften der Windenergieanlagen sowie der weiteren gewerblichen Quellen

In den folgenden Tabellen sind die berücksichtigten Quellen der Vor- und Zusatzbelastung für den Tages- und Nachtzeitraum detailliert aufgelistet. Der Schallleistungspegel (SLP) der zweiten Spalte ist ohne Zuschläge versehen.

Tabelle D.1: Windenergieanlagen der Vorbelastung im Nachtzeitraum

			Sicherheitszuschlag	Schallleistungspegel	Naben-		Koordinaten		
Ð	Modus	SLP		immissionsrelevant	höhe				
			nachts	nachts	ď	Ostwert	Nordwert	Höhe N.N.	
		[dB(A)]	[dB]	[dB(A)]	<u>"</u>	<u>m</u>	[w]	<u>m</u>	
WEA 01	Mode	Anlagent	Anlagentyp: N163/6.X NH:164m (Nordex) – Spektrum: Mode 101dB	ordex) - Spektrum: Mode	9 101dB				
	101dB								
		101,0	2,1	103,1	164,0	389.915,63	5.767.657,74	68,1	
WEA 02	Mode	Anlagent	Anlagentyp: N149/5.7 NH:125.4m (Nordex) – Spektrum: Mode 99.5dB	Nordex) - Spektrum: Moo	de 99.5dB				
	99.5dB								
		5'66	2,1	101,6	125,4	390.147,60	5.767.417,30	68,2	
WEA 03	Mode	Anlagent	Anlagentyp: N149/5.7 NH:126.19m (Nordex) – Spektrum: Mode 101.5dB	(Nordex) - Spektrum: Mc	de 101.5dB				
	101.5dB								
		101,5	2,1	103,6	126,2	390.329,70	5.767.033,10	0,89	
WEA 04	Mode 99dB	Anlagent	Anlagentyp: N163/6.X NH:164.51m (Nordex) – Spektrum: Mode 99dB	(Nordex) – Spektrum: Ma	ade 99dB	***************************************			
		0,66	2,1	101,1	164,5	390.130,40	5.766.693,30	67,5	
WEA 05	Mode	Anlagent	Anlagentyp: N163/6.X NH:164.62m (Nordex) – Spektrum: Mode 104dB	(Nordex) - Spektrum: Mo	ode 104dB				
	104dB								
		104,0	2,1	106,1	164,6	390.472,07	5.766.512,94	6,79	
WEA 06	Mode	Anlagent	Anlagentyp: N175/6.X NH:179m (Nordex) – Spektrum: Mode 104.5dB	ordex) – Spektrum: Mode	104.5dB				
	104.5dB								
		104,5	2,1	106,6	179,0	389.875,15	5.768.006,72	9'29	
WEA-18	Mode	Anlagent	Anlagentyp: V52 NH:74m (Vestas) – Spektrum: Mode 100.2dB	- Spektrum: Mode 100.2d	В				
	100.2dB								
		100,2	2,1	102,3	74,0	388.802,00	5.767.657,00	71,3	
WEA-19	Mode	Anlagent	Anlagentyp: V52 NH:74m (Vestas) – Spektrum: Mode 100.2dB	- Spektrum: Mode 100.2d	В				
	100.2dB								
		100,2	2,1	102,3	74,0	388.958,00	5.767.934,00	8,69	

Tabelle D.1: Fortsetzung: Windenergieanlagen der Vorbelastung im Nachtzeitraum

8 8	20		Sicherheitszuschlag	Schallleistungspedel	Naben-		Koordingten	
ΩI	Modus	SLP	1	immissionsrelevant	höhe			
			nachts	nachts	ď	Ostwert	Nordwert	Höhe N.N.
		[dB(A)]	[dB]	[dB(A)]	<u>"</u>	<u>E</u>	[m]	[m]
WEA-LO11	Mode	Anlagent	Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 98.7dB	NEG MICON) - Spektrum	: Mode 98.7	7dB		
	98.7dB							
		7,86	2,1	100,8	0,07	392.736,00	5.763.915,00	6,69
WEA-LO12	Mode	Anlagent	Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 98.7dB	NEG MICON) - Spektrum	: Mode 98.7	7dB		
	98.7dB							
		7,86	2,1	100,8	0,07	392.739,00	5.764.749,00	9,69
WEA-LO13	Mode	Anlagent	Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 98.7dB	NEG MICON) - Spektrum	: Mode 98.7	7dB		
	98.7dB							
		7,86	2,1	100,8	0,07	393.259,00	5.764.723,00	2'69
WEA-LO14	Mode	Anlagent	Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 98.7dB	NEG MICON) - Spektrum	: Mode 98.7	7dB		
	98.7dB							
3		7,86	2,1	100,8	0,07	393.670,00	5.765.515,00	72,7
WEA-LO15	Mode	Anlagent	Anlagentyp: E-53 NH:73.25m (ENERCON GmbH) – Spektrum: Mode 99.5dB	(CON GmbH) - Spektrum:	Mode 99.5	dB		
	99.5dB							
		5,66	2,1	101,6	73,2	393.006,00	5.766.274,00	71,9
WEA-LO16	Mode	Anlagent	Anlagentyp: E-53 NH:73.25m (ENERCON GmbH) – Spektrum: Mode 101.4dB	(CON GmbH) - Spektrum:	Mode 101.	4dB		
	101.4dB							
34		101,4	1,6	103,0	73,2	392.233,00	5.766.243,00	69,3
WEA-LO17	Mode	Anlagent	Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 98.7dB	NEG MICON) – Spektrum	: Mode 98.7	7dB		
	98.7dB							
		7,86	2,1	100,8	0,07	392.671,00	5.764.210,00	6'69

Tabelle D.1: Fortsetzung: Windenergieanlagen der Vorbelastung im Nachtzeitraum

	-27		Sicherheitszuschlag	Schallleistungspegel	Naben-		Koordinaten	
Q	Modus	SLP		immissionsrelevant	höhe			
			nachts	nachts	ď	Ostwert	Nordwert	Höhe N.N.
		[dB(A)]	[dB]	[dB(A)]	Ξ	<u>E</u>	<u>[</u>	<u>m</u>
WEA-PT01	Mode	Anlagent	yp: NM 60/1000 NH:70m (Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 100.5dB	: Mode 100	.5dB		
	100.5dB							
		100,5	0,0	100,5	0,07	392.279,00	5.765.904,00	0,69
WEA-PT02	Mode	Anlagent	yp: NM 60/1000 NH:70m (Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 100.5dB	: Mode 100	.5dB		
	100.5dB							
		100,5	0,0	100,5	0,07	392.413,00	5.765.617,00	69,2
WEA-PT03	Mode	Anlagent	yp: NM 60/1000 NH:70m (Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 100.5dB	: Mode 100	.5dB		
	100.5dB							
		100,5	0,0	100,5	0,07	392.681,00	5.765.319,00	69,1
WEA-PT04	Mode	Anlagent	yp: NM 60/1000 NH:70m (Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 100.5dB	: Mode 100	.5dB		
	100.5dB							
		100,5	0,0	100,5	0,07	393.046,00	5.765.640,00	70,4
WEA-PT05	Mode	Anlagent	yp: NM 60/1000 NH:70m (Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 100.5dB	: Mode 100	.5dB		
	100.5dB							
		100,5	0,0	100,5	0,07	393.260,00	5.765.992,00	72,6
WEA-PT08	Mode	Anlagent	yp: NM 60/1000 NH:70m (Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 100.8dB	: Mode 100	.8dB		
	100.8dB	,						
54		100,8	0,0	100,8	0,07	392.349,00	5.765.029,00	69,3
WEA-PT09	Mode	Anlagent	yp: NM 60/1000 NH:70m (Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 100.8dB	: Mode 100	.8dB		
	100.8dB							
		100,8	0,0	100,8	0,07	392.658,00	5.765.075,00	69,1

Tabelle D.1: Fortsetzung: Windenergieanlagen der Vorbelastung im Nachtzeitraum

6	22		Cichorhoiteanechlos	Cohalloichunganan	Mohon		Voordington	
ΙD	Modus	SLP	Spilles 12 control of the control of	immissionsrelevant	höhe			
			nachts	nachts	Ę	Ostwert	Nordwert	Höhe N.N.
		[dB(A)]	[dB]	[dB(A)]	<u>"</u>	<u>E</u>	[m]	<u>m</u>
WEA-PT10	Mode	Anlagent	Anlagentyp: NM 60/1000 NH:70m (NEG MICON) – Spektrum: Mode 100.8dB	NEG MICON) - Spektrum	: Mode 100	.8dB		
	100.8dB							
		100,8	0,0	100,8	0,07	393.415,00	5.765.512,00	71,2
WEA-ST1_Z1	Mode	Anlagent	Anlagentyp: N131/3000 NH:114m (Nordex) – Spektrum: Mode 100.8dB	Nordex) - Spektrum: Moo	de 100.8dB			
	100.8dB							
	~	100,8	1,4	102,2	114,0	392.071,48	5.765.128,56	69,4
WEA-ST1_Z2	Mode	Anlagent	Anlagentyp: N131/3000 NH:134m (Nordex) – Spektrum: Mode 100.4dB	Vordex) – Spektrum: Mod	de 100.4dB			
	100.4dB							
		100,4	1,4	101,8	134,0	391.738,00	5.766.022,00	69,1
WEA_VB01Ken-	Mode	Anlagent	Anlagentyp: E-103 EP2 NH:138.38m (ENERCON GmbH) – Spektrum: Mode 103dB	(ENERCON GmbH) - Spe	ktrum: Moo	de 103dB		
trup	103dB							
		103,0	2,1	105,1	138,4	390.101,00	5.765.767,00	0,69
WEA_VB02Ken-	Mode	Anlagent	Anlagentyp: E-103 EP2 NH:138.38m (ENERCON GmbH) – Spektrum: Mode 103dB	(ENERCON GmbH) - Spe	ktrum: Moo	de 103dB		
trup	103dB							
		103,0	2,1	105,1	138,4	390.169,00	5.765.512,00	2,69
WEA_VB03Ken-	Mode	Anlagent	Anlagentyp: E-103 EP2 NH:138.38m (ENERCON GmbH) – Spektrum: Mode 104dB	(ENERCON GmbH) - Spe	ktrum: Moo	de 104dB		
trup	104dB				;			
		104,0	2,1	106,1	138,4	390.253,00	5.765.266,00	71,1

Tabelle D.2: Gewerbliche Punktschallquellen der Vorbelastung im Tages- und Nachtzeitraum

		Sich	Sicherheitszuschlag	hlag	Scha	Schallleistungspegel	egel	Höhe		Koordinaten	
ū	SLP				imm	immissionsrelevant	/ant	ü.G.			
		tags	abends	nachts	tags	abends	nachts	ፋ	Ostwert	Nordwert	Höhe N.N.
	[dB(A)]	[dB]	[dB]	[dB]	[dB(A)]	[dB(A)]	[dB(A)]	<u>E</u>	<u>[</u> w]	[m]	<u>E</u>
GE-11	0,06	0,0	0,0	0,0	0'06	0'06	0,06	8,00	392.636,00	5.765.910,00	77,99
GE-12	0,66	0,0	0,0	0,0	0,66	0,66	0,66	10,00	392.148,00	5.764.691,00	02,62
GE-13	0,06	0,0	0,0	0,0	0,06	0,06	0,06	8,00	390.717,00	5.765.483,00	77,84

Tabelle D.3: Gewerbliche Flächenschallquellen der Vorbelastung im Tages- und Nachtzeitraum

		Sich	Sicherheitszuschlag	hlag	Scha	Schallleistungspegel	legel	Höhe		Koordinaten	
ΙΩ	SLP				imm	immissionsrelevant	vant	ü.G.			
		tags	abends	nachts	tags	abends	nachts	جّ	Ostwert	Nordwert	Höhe N.N.
	$\left[\frac{dB(A)}{m^2}\right]$	[dB]	[dB]	[dB]	$\left[\frac{dB(A)}{m^2}\right]$	$\left[\frac{dB(A)}{m^2}\right]$	$\left[\frac{dB(A)}{m^2}\right]$	Ξ	<u>"</u>	Ξ	<u>E</u>
GE-01	55,0	0,0	0,0	0,0	55,0	55,0	55,0	2,00	393.567,00	5.765.685,00	1
GE-02	55,0	0,0	0,0	0,0	55,0	55,0	55,0	5,00	393.575,00	5.765.800,00	
GE-03	55,0	0,0	0,0	0,0	55,0	55,0	55,0	2,00	393.906,00	5.765.604,00	1
GE-04	45,0	0,0	0,0	0,0	45,0	45,0	45,0	2,00	394.057,00	5.765.906,00	1
GE-05	55,0	0,0	0,0	0,0	55,0	55,0	55,0	2,00	393.362,00	5.765.985,00	1
GE-06	55,0	0,0	0,0	0,0	25,0	25,0	25,0	2,00	393.434,00	5.765.685,00	1
GE-07	55,0	0,0	0,0	0,0	25,0	25,0	25,0	2,00	393.360,00	5.765.987,00	1
GE-08	55,0	0,0	0,0	0,0	25,0	25,0	25,0	2,00	393.834,00	5.765.537,00	1
GE-09	55,0	0,0	0,0	0,0	25,0	25,0	0'55	2,00	394.114,00	5.765.663,00	1
GE-10	45,0	0,0	0,0	0,0	45,0	45,0	45,0	2,00	394.281,00	5.765.755,00	1

Tabelle D.4: Windenergieanlagen der Zusatzbelastung im Tageszeitraum

	-20		Sicherheit	Sicherheitszuschlag	Schallleistungspegel	legedsbun	Naben-		Koordinaten	
ū	Modus	SLP			immission	immissionsrelevant	höhe			
			tags	abends	tags	abends	ď	Ostwert	Nordwert	Höhe N.N.
		[dB(A)]	[dB]	[dB]	[dB(A)]	[dB(A)]	[w]	<u>"</u>	[w]	<u>m</u>
WEA T1	Mode 0	Anlagent	yp: N149 5.X	Anlagentyp: N149 5.X (Nordex SE) – Spektrum: Mode 0	- Spektrum:	Mode 0				
		105,6	2,1	2,1	107,7	107,7	164,0	391.976,86	164,0 391.976,86 5.765.415,10	69,2
WEA T2	Mode 0	Anlagent	yp: N149 5.X	Anlagentyp: N149 5.X (Nordex SE) – Spektrum: Mode 0	- Spektrum:	Mode 0				
		105,6	2,1	2,1	107,7	107,7	164,0	391.824,59	164,0 391.824,59 5.765.705,75	69,2

Tabelle D.5: Windenergieanlagen der Zusatzbelastung im Nachtzeitraum

			Sicherheitszuschlag	Schallleistungspegel	Naben-		Koordinaten	
Q	Modus	SLP		immissionsrelevant	höhe			50
			nachts	nachts	۴	Ostwert	Nordwert	Höhe N.N.
		[dB(A)]	[dB]	[dB(A)]	<u>"</u>	Ξ	[m]	<u>E</u>
WEA T1	Mode 14	Anlagent	Anlagentyp: N149 5.X (Nordex SE) – Spektrum: Mode 14	- Spektrum: Mode 14				
		97,5	2,1	9,66	164,0	391.976,86	391.976,86 5.765.415,10	69,2
WEA T2	Mode 9	Anlagent	Anlagentyp: N149 5.X (Nordex SE) – Spektrum: Mode 9	- Spektrum: Mode 9				
		101,5	2,1	103,6	164,0	391.824,59	391.824,59 5.765.705,75	69,2

E Oktavbandspektren der Windenergieanlagen

Für die Berechnungen wurden die folgenden Oktavbandspektren der untersuchten Windenergieanlagen eingesetzt. Dargestellt sind die Oktavbandspektren für den reinen Schallleistungspegel, für den Gesamt-Schallleistungspegel inkl. des Sicherheitszuschlags SZ und zusätzlich noch für den $L_{\rm e,max}$ gemäß der LAI-Hinweise. Der $L_{\rm e,max}$ beschreibt den Pegel, der bei einer schalltechnischen Vermessung nach FGW-Richtlinie eingehalten werden muss. Als Unsicherheiten gehen hier nur die Messunsicherheit $\sigma_{\rm R}$ und die Produktstandardabweichung $\sigma_{\rm P}$ ein. Daraus ergibt sich hier ein Wert von 1,8 dB. Die entsprechenden Datenblätter und Messberichte mit den Oktavbandspektren für alle Betriebsmodi sind im Anhang F beigefügt.

Tabelle E.1: Oktavbandspektren der angesetzten Betriebsmodi der Zusatzbelastung.

							Okta	Oktavbandspektrum	pektrun	_							
a	Тур	Typ Bew.	Schal	Schallleistungspegel [dB] bei den Oktavmittenfrequenzen [Hz]	gspegel	[dB] be	i den O	ktavmi	Henfred	neuzen	[Hz]	Summenpegel	npegel	Zr	Zuschläge [dB]	ge [dE	~
			31,5	63	125	250	200	500 1.000 2.000 4.000 8.000	2.000	4.000	8.000	[dB(A)] [dB(lin)]	[dB(lin)]	¥	ķ	.호	kin
	N149	5.X (Nordex	N149 5.X (Nordex SE) - Modus: Mode 14, Quelle: F008_275_A14_EN	odus: M	ode 14,	Quelle:	F008_2	275_A14	F_EN							
	Okta	vbanc	Ispektr	Oktavbandspektrum exkl. SZ	. SZ												
	Lw	4	69,1	L _w A 69,1 79,2 85,4 89,1 91,7 92,4 89,9 82,3 74,3	85,4	89,1	41,7	92,4	6,68	82,3	74,3	97,5	111,2	0	0	0	0
Mode 14	Okta	vbanc	Ispektr	um L _{e,mc}	x mit $\sigma_{\rm f}$	₂ = 1,2 d	$\mathbf{B}, \sigma_{p} = 0$	0,5 dB, o	rprog = 0,	,0 dB, σ	ges = 1,3	Oktavbandspektrum L _{e,max} mit σ_{R} = 1,2 dB, σ_{p} = 0,5 dB, σ_{prog} = 0,0 dB, σ_{ges} = 1,3 dB zu SZ = 1,7 dB	= 1,7 dB				Б
	Lw	4	8,07	L _w A 70,8 80,9 87,1 90,8 93,4 94,1 91,6 84,0 76,0	87,1	8,06	93,4	94,1	9,16	84,0	0,97	99,2	112,8	0	0	0	0
	Okta	vbanc	spektr	um inkl.	SZ mit	$\sigma_{R} = 1,2$	dB, σ _p =	= 0,5 dB,	, $\sigma_{\rm prog}$ =	1,0 dB,	$\sigma_{\rm ges} = 1$	Oktavbandspektrum inkl. SZ mit σ_{R} = 1,2 dB, σ_{p} = 0,5 dB, σ_{prog} = 1,0 dB, σ_{ges} = 1,6 dB zu SZ = 2,1 dB	Z = 2,1 dB	8		60.	
	Lw	∢	71,2	Lw A 71,2 81,3 87,5 91,2 93,8 94,5	87,5	91,2	93,8		92,0	84,4	76,4	9,66	113,3	0	0	0	0
	N149	5.X (Nordex	N149 5.X (Nordex SE) - Modus: Mode 0, Quelle: F008_275_A14_EN	odus: M	ode 0, (3uelle: ŀ	-008_27	75_A14	EN							
	Okta	vbanc	Ispektr	Oktavbandspektrum exkl. SZ	ZS.								3	- 12			
	٦	∢	Lw A 77,2	87,3	93,5	97,2 99,8	8,66	100,5	98,0 90,4	4,06	82,4	105,6	119,3	0	0	0	0
Mode 0	Okta	vbanc	Ispektr	um L _{e,mc}	x mit $\sigma_{\rm f}$	a = 1,2 d	$\mathbf{B}, \sigma_{p} = 0$	0,5 dB, o	rprog = 0,	,0 dB, σ	ges = 1,3	Oktavbandspektrum Le,max mit σ_{R} = 1,2 dB, σ_{p} = 0,5 dB, σ_{prog} = 0,0 dB, σ_{ges} = 1,3 dB zu SZ = 1,7 dB	= 1,7 dB	8			
	۲w	∢	Lw A 78,9	0,68	95,2	6'86	98,9 101,5 102,2		2,66	92,1	84,1	107,3	120,9	0	0	0	0
	Okta	vbanc	Ispektr	um inkl.	SZ mit	$\sigma_{\rm R} = 1,2$	dB, σ _p =	= 0,5 dB,	, $\sigma_{\text{prog}} =$	1,0 dB,	$\sigma_{\rm ges} = 1$,	Oktavbandspektrum inkl. SZ mit σ_{R} = 1,2 dB, σ_{p} = 0,5 dB, σ_{prog} = 1,0 dB, σ_{ges} = 1,6 dB zu SZ = 2,1 dB	Z = 2,1 dB				
	Lw	٨	Lw A 79,3	89,4	92'6	99,3 101,9 102,6 100,1 92,5	101,9	102,6	100,1	92,5	84,5	107,7	121,4	0	0	0	0
	N149	5.X (I	Nordex	N149 5.X (Nordex SE) - Modus: Mode 9, Quelle: F008_275_A14_EN	odus: M	ode 9, 0	Quelle: F	-008_27	15_A14_	EN			S S				3
	Okta	vbanc	Ispektr	Oktavbandspektrum exkl. SZ	. SZ												
	Lw	∢	Lw A 73,1 83,2	83,2	89,4	89,4 93,1 95,7 96,4 93,9 86,3 78,3	45,7	4,96	63,6	86,3	78,3	101,5	115,2	0	0	0	0
Mode 9	Okta	vbanc	Ispektr	um Le,mo	x mit $\sigma_{\rm f}$	a = 1,2 d	$\mathbf{B}, \sigma_{p} = 0$	0,5 dB, o	rprog = 0,	,0 dB, σ	ges = 1,3	Oktavbandspektrum Le,max mit σ_{R} = 1,2 dB, σ_{p} = 0,5 dB, σ_{prog} = 0,0 dB, σ_{ges} = 1,3 dB zu SZ = 1,7 dB	= 1,7 dB				
	Lw	۷	Lw A 74,8	84,9	91,1	94,8 97,4	7.5	98,1	95,6 88,0	88,0	80,0	103,2	116,8	0	0	0	0
	Okta	vbanc	Ispektr	um inkl.	SZ mit	$\sigma_{\rm R} = 1,2$	dB, σ _p =	= 0,5 dB,	, $\sigma_{\text{prog}} =$	1,0 dB,	$\sigma_{\rm ges} = 1$,	Oktavbandspektrum inkl. SZ mit $\sigma_{\rm R}$ = 1,2 dB, $\sigma_{\rm p}$ = 0,5 dB, $\sigma_{\rm prog}$ = 1,0 dB, $\sigma_{\rm ges}$ = 1,6 dB zu SZ = 2,1 dB	Z = 2,1 dB				
	Lw	٧	75,2	85,3	91,5	95,2	8,76	98,5	0,96	88,4	80,4	103,6	117,3	0	0	0	0

Tabelle E.2: Oktavbandspektren der angesetzten Betriebsmodi der Vorbelastung.

							2440	yhonde	Oktovkondenskriim								
•					00							,			:	•	
2	Τγρ	Typ Bew.	~~~	Schallleistungspegel [dB] bei den Oktavmittenfrequenzen [Hz]	gspegel	[dB] be	i den O	ktavmi	Henfred	henzer	[Hz]	Summenpegel	legedue	Z	Zuschläge [dB]	ige [d	6
			31,5	63	125	250	200	1.000	2.000	4.000	8.000	[dB(A)]	500 1.000 2.000 4.000 8.000 [dB(A)] [dB(lin)]	호	ktn	.호	kin
	N163	1/6.X P	VH:164r	n (Nord	ex)-M	odus: M	ode 101	dB, Qui	elle: He	rsteller	F008_2	77_A19_	N163/6.X NH:164m (Nordex) - Modus: Mode 101dB, Quelle: Hersteller F008_277_A19_IN_REV07	7			
Mode 101dB	Okta	vban	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Lw	A	-80,0	87,0	91,7	94,0	94,5	6,46	92,8	83,3	64,4	94,0 94,5 94,9 92,8 83,3 64,4 101,0	114,7	0	0	0	0
	N149	1/5.7	VH:125.	4m (Nor	- (xəp.	Modus:	Mode 99	9.5dB, G	}uelle: □	atenble	att F008	N149/5.7 NH:125.4m (Nordex) - Modus: Mode 99.5dB, Quelle: Datenblatt F008_275_A19	6				
Mode 99.5dB	Okta	vban	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	L	4	-80,0	81,2	87,4	91,1	93,7	4,46	91,1 93,7 94,4 91,9 84,3		76,3	5,66	109,8	0	0	0	0
	N149	1/5.7	VH:126.	19m (No	rdex)-	Modus:	Mode 1	101.5dB	, Quelle	: Daten	blatt F0	N149/5.7 NH:126.19m (Nordex) - Modus: Mode 101.5dB, Quelle: Datenblatt F008_275_A19	A19				
Mode 101.5dB	Okta	ıvbanı	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Lw	۷	-80,0	83,2	89,4	93,1	95,7 96,4 93,9	4,96	63,6	86,3	78,3	101,5	111,8	0	0	0	0
	N163	1/6.X P	NH:164.	51m (No	ordex)-	Modus	Mode (99dB, Q	uelle: H	erstelle	r F008	277_A19	N163/6.X NH:164.51m (Nordex) - Modus: Mode 99dB, Quelle: Hersteller F008_277_A19_IN_REV07	20,			
Mode 99dB	Okta	vban	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Lw	A	Lw A -80,0	85,0		89,7 92,0 92,5 92,9 90,8 81,3 62,4	92,5	92,9	8,06	81,3		0,66	112,7	0	0	0	0
	N163	1 X.9/	VH:164.	62m (Nc	ordex)-	Modus	: Mode	104dB,	Quelle:	Herstel	ler F008	3_277_A1	N163/6.X NH:164.62m (Nordex) - Modus: Mode 104dB, Quelle: Hersteller F008_277_A19_IN_REV07	707			
Mode 104dB	okta	vban	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Lw	4	-80,0	Lw A -80,0 90,0	94,7	94,7 97,0 97,5 97,9 95,8 86,3	67,5	6,79	8,56	86,3		67,4 104,0 117,7	117,7	0	0	0	0
	N175	1 X.9/	VH:179n	n (Nord	ex) - M	M:snpc	ode 104	.5dB, Q	nelle: H	erstelle	r F008_	N175/6.X NH:179m (Nordex) - Modus: Mode 104.5dB, Quelle: Hersteller F008_278_A19_IN	NI				
Mode 104.5dB	okta	vban	dspektr	Oktavbandspektrum exkl. SZ	I. SZ		55						72				
	Lw	A	L _w A -80,0 87,3	87,3	94,1	6,76	0,86	6'86	8'96	87,5	71,0	94,1 97,5 98,0 98,9 96,8 87,5 71,0 104,5	116,0	0	0	0	0
	V52 I	NH:74	m (Vest	V52 NH:74m (Vestas) - Modus: Mode 100.2dB, Quelle: Messbericht WT 2349/02	odus: Mo	ode 100	.2dB, Qı	uelle: M	essberi	cht WT	2349/02	6					
Mode 100.2dB	Okta	vban	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Lw	٨	70,2	L _w A 70,2 79,8 86,0 89,9 91,2 93,5 93,6 93,7 89,0 100,2	86,0	6,68	91,2	93,5	93,6	93,7	0,68	100,2	112,1	0	0	0	0
	ΣN	50/100	7:HN 0C	NM 60/1000 NH:70m (NEG MICON) - Modus: Mode 98.7dB, Quelle: LAI-Hinweise	G MICC	N) - Mo	dus: Mc	de 98.7	'dB, Que	elle: LA	I-Hinwe	ise					
Mode 98.7dB	Okta	vban	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Ľ	4	-80,0	-20,3	-11,9	-7,7	-5,5	0,9-	-8,0	-12,0	-5,5 -6,0 -8,0 -12,0 -22,9	0,0	9,4	0	0	0	0

Tabelle E.2: Fortsetzung: Oktavbandspektren der angesetzten Betriebsmodi der Vorbelastung.

							Okta	vbands	Oktavbandspektrum	_							
a	Тур	Typ Bew.		llleistun	Schallleistungspegel [dB] bei den Oktavmittenfrequenzen [Hz]	[dB] be	i den 0	ktavmi	ttenfreq	luenzen	[Hz]	Summenpegel	npegel	N	Zuschläge [dB]	ige [c	[8]
			31,5	63	125	250	200	1.000	2.000	4.000	8.000	250 500 1.000 2.000 4.000 8.000 [dB(A)] [dB(lin)]	[dB(lin)]	ᅕ	ktn	ĸ	kin
	E-53	NH:7	3.25m (l	ENERCC	E-53 NH:73.25m (ENERCON GmbH) - Modus: Mode 99.5dB, Quelle: LAI-Hinweise	4) - Moc	dus: Mo	de 99.5α	dB, Que	lle: LAI	-Hinwei	se					
Mode 99.5dB	Okto	ıvbanı	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Lw	٨	-80,0	-20,3	-11,9	7,7-	-5,5	-6,0	-8,0	-12,0	-22,9	L _w A -80,0 -20,3 -11,9 -7,7 -5,5 -6,0 -8,0 -12,0 -22,9 0,0 9,4	9,4	0	0	0	0
	E-53	NH:7:	3.25m (l	ENERCC	N Gmb	4) - Moc	dus: Mo	de 101.4	tdB, Qu	elle: Dr	eifach. I	E-53 NH:73.25m (ENERCON GmbH) - Modus: Mode 101.4dB, Quelle: Dreifach. M69 915/2. WT 6263/08. M87	WT 626	3/08.	M87		
	748/1	Ę															
Mode 101.4dB	Okto	ıvbanı	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	L	4	Lw A -80,0 82,4	82,4	89,4 91,7 93,7 96,6 95,5 89,3 79,8	91,7	93,7	9,96	95,5	89,3	79,8	101,4	111,2	0	0	0	0
	Σ N	50/10	7:HN 0C	'0m (NE	NM 60/1000 NH:70m (NEG MICON) - Modus: Mode 100.5dB, Quelle: WICO 01602299	N) - Mo	dus: Mc	ode 100	.5dB, Qı	uelle: W	ICO 016	502299					
Mode 100.5dB	Okto	ıvbanı	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Lw	4	Lw A 78,3	87,3	87,3 91,7 92,9 92,6 93,3 94,1 88,1 75,2 100,5	92,9	95,6	93,3	94,1	88,1	75,2	100,5	119,5	0	0	0	0
	ΣN	50/10	7:HN 0C	'0m (NE	NM 60/1000 NH:70m (NEG MICON) - Modus: Mode 100.8dB, Quelle: WICO 01602299	N) - Mo	dus: Mc	ode 100	.8dB, Qı	uelle: W	ICO 01	602299					
Mode 100.8dB	Okto	ıvban	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Lw	٧	78,3	87,3	91,7	92,9	95,6	93,3	94,1	88,1	75,2	L _w A 78,3 87,3 91,7 92,9 92,6 93,3 94,1 88,1 75,2 100,5 119,5	119,5	0	0	0	0
	N13	1/300(J NH:11	4m (No	rdex)-	Modus:	Mode 1	.00.8dB,	Quelle:	Direkt	vermess	N131/3000 NH:114m (Nordex) - Modus: Mode 100.8dB, Quelle: Direktvermessung KCE 213251-08	213251-0	8			
Mode 100.8dB	Okto	ıvbanı	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Lw	4	Lw A 73,4	84,7	91,9	94,0	94,3	93,8	92,2	0,68	82,0	84,7 91,9 94,0 94,3 93,8 92,2 89,0 82,0 100,8	116,1	0	0	0	0
	N13	1/300(0 NH:13	4m (No	rdex)-	Modus:	Mode 1	00.4dB	, Quelle:	: Direkt	vermes	N131/3000 NH:134m (Nordex) - Modus: Mode 100.4dB, Quelle: Direktvermessung KCE 213251-08	213251-0	8			
Mode 100.4dB	Okto	ıvbanı	dspektr	Oktavbandspektrum exkl. SZ	I. SZ												
	Γw	A	72,3	83,9	,3	93,5	94,0	94,0	93,5 94,0 94,0 92,0 86,8 79,8	8,98	_	100,4	115,2	0	0	0	0
	E-10	3 EP2	NH:138.	38m (El	NERCON	GmbH)	- Modu	is: Mode	103dB,	Quelle	Herstel	E-103 EP2 NH:138.38m (ENERCON GmbH) - Modus: Mode 103dB, Quelle: Herstellerdatenblatt D0434367-9/DA	latt D043	4367	-9/DA		
Mode 103dB	okte	ıvbanı	dspektr	Oktavbandspektrum exkl. SZ	I. SZ			8								R	
	Lw	L _w A	-80,0	86,5	92,2	94,8		97,5	97,3 97,5 95,0 87,4	87,4	6,79	67,9 103,0 114,7 0 0	114,7	0	0	0	0
						1	1										

Tabelle E.2: Fortsetzung: Oktavbandspektren der angesetzten Betriebsmodi der Vorbelastung.

							Okto	Oktavbandspektrum	pektrur	٤							
OI.	Typ	Typ Bew.	Schal	lleistun	gspegel	[dB] be	ei den C	Oktavmi	ttenfre	Schallleistungspegel [dB] bei den Oktavmittenfrequenzen [Hz]		Summenpegel	npegel	Zn	Zuschläge [dB]	ge [dE	3]
			31,5	63	125	250	200	1.000	2.000	4.000	8.000	[dB(A)]	31,5 63 125 250 500 1.000 2.000 4.000 8.000 [dB(A)] [dB(lin)] kt ktn ki kin	¥	ŧ	.조	Ĕ
	E-10	3 EP2	NH:138.	38m (EN	VERCON	GmbH)	- Modi	us: Mode	3 104dB	, Quelle:	Herstel	lerdatenb	E-103 EP2 NH:138.38m (ENERCON GmbH) - Modus: Mode 104dB, Quelle: Herstellerdatenblatt D0434367-9/DA	4367-	MD/		
Mode 104dB	okt	avban	Oktavbandspektrum exkl. SZ	um exk	l. SZ												
	Lw	4	-80,0	87,3	93,0	7,56	98,4	9'86	62'6	88,2	68,9	104,0	0,0 87,3 93,0 95,7 98,4 98,6 95,9 88,2 68,9 104,0 115,5 0 0 0 0 0	0	0	0	0

F Datenblätter

Im nachfolgend angefügten Dokument sind alle Datenblätter eingebunden, aus denen Informationen, wie z.B. Oktavbandspektren, Schallleistungspegel und mögliche Nabenhöhen, für die Berechnung entnommen wurden. Das Dokument lässt sich durch Auswählen des Dokumentsymbols öffnen.

G Revisionsübersicht

Tabelle G.1: Revisionsübersicht

Revision	Änderungen	Anmerkungen	Datum
Rev. 0		Initiale Version	11.12.2023